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Introduction
For this problem, we are looking at the unsteady flow through a finite pipe of length L. We are told that the inlet
pressure is P0, the outlet pressure is PL, and the system starts at rest. At t = 0 our pressure gradient is introduced.
We consider only the 1-dimensional time-dependent flow. This means out velocity only depends on one spatial
variable, r i this case, in addition to time. We assume no slip boundary conditions at the pipe walls and a bounded
solution everywhere else.

Over the course of this homework, we will be solving this problem. There will be several specific questions asked
throughout which we will use to separate the sections.

Assumptions

1. Incompressible

2. Newtonian

3. vr = 0

4. vθ = 0

5. vz = vz(r, t) = 0

Question 1 - Combination of Variables
We cannot use combination of variables for this problem since it does not give a non-zero velocity profiles as time
goes to infinity. However, since we know physically that this sort of pipe flow will have a non-zero velocity profile
after the initial condition. This means that our solution cannot be found with combination of variables, so we
instead go to separation of variables.

Question 2 - Non-dimensionalization
To begin, we will first simplify our dimensional equation. Once we have simplified, we will introduce the appropriate
non-dimensionalization and see how the math works out. We will start with the continuity equation in cylindrical
coordinates.

∂ρ
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Using assumptions 1, 3, and 4, the first three terms go to zero, respectively, which leaves us with

∂vz
∂z

= 0 (2)

In analyzing the momentum equation, it’s notable that velocity components in the θ and r directions are absent.
Consequently, all terms in the corresponding momentum equations for these directions equate to zero, leaving only
the pressure gradient term. This observation suggests that pressure remains constant in both the θ and r directions,
directing our attention towards the z-momentum equation.
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On the left hand side, the second and third terms go to zero through assumption 3 and 4 whilst the fourth term
goes to zero via the continuity result in Eq. (2). However, we need to not that the first term is not zero because the
flow is unsteady. On the right hand side, the last two terms are equal to zero through assumption 5 which suggests
that velocity is only a function r and t and the continuity result. This leaves us with the following equation
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(4)

Now we can non-dimensionalize the variables with ϕ as the non-dim velocity, ζ as non-dim radius and tau as
non-dim time. We will start with the velocity
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ϕ =
vz

(P0−PL)R2

4µL

(5)
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(P0 − PL)R

2ϕ

4µL
(6)

Following this, we can proceed similarly with regards to the radial dimension, denoted as r

ζ =
r

R
(7)

r = ζR (8)

Lastly, we can extend this analysis to include the time variable.
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µ

(9)
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µ
(10)

Next, we plug these dimensioned variables in terms of their non-dimensionalized form into Eq. (4).
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Since we know that our pressure gradient is from high to low we can say that
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(11)

When we put this back into the main equation, there is a negative sign which makes it P0 − PL.
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As a result, we arrive at the simplified non-dimensional momentum equation.
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Regarding the boundary conditions, we consider the velocities vz(R, t) and vz(r, t) at the wall (ξ = R/R = 1)
and center of the pipe (r = 0, ξ = 0/R = 0) respectively. At the wall, adhering to the no-slip condition, the
velocity equals zero, mirroring that of the wall. Hence, for the first boundary condition, we express ϕ(ξ = 1, t) = 0.
Examining the second boundary condition, the velocity at the pipe’s center must be finite, indicating a non-zero
value at r = 0, ξ = 0/R = 0. This yields ϕ(ξ = 0, t) = finite. Finally, the initial condition stipulates that the fluid
is initially at rest, implying zero velocity at t = 0 so τ = 0 from Eq. (9). Thus, ϕ(r, τ = 0) = 0.

Question 3 - Steady State Solution
Now that we have the governing differential equation, we wish to find the solution. To do this, we introduce the
following decomposition:

ϕ = ϕ∞(ξ)− ϕτ (ξ, τ) (13)

Substituting this into our governing equation we get:

∂(ϕ∞ − ϕτ )
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By definition, ϕτ decays to zero as τ goes to infinity. If we take the limit of the above equation as τ approaches
infinity, and noticing ϕ∞ is only a function of ξ, we can reduce the problem to:

0 = 4 +
1

ξ

∂

∂ξ
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ξ
∂ϕ∞

∂ξ

)
(15)

This is a simple ODE which can be solved through integration. Notice that we require both the no-slip and bounded
boundary conditions to hold in this case, but do not use the initial condition. This we can say ϕ∞(0) < ∞, ϕ∞(1) =
0. Below is the work for the final solution.

−4ξ =
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ϕ∞ = −ξ2 + C1 ln(ξ) + C2 (16)

Eq. (16) is the general form of the solution. If we require the solution stays bounded at 0, then it is clear to see
that C1 = 0. If we then plug in ξ = 1, we can see the C2 = 1. Given this, we get the following result for the
steady-state solution:

ϕ∞ = 1− ξ2 (17)

This is our non-dimensional solution. Recall the non-dimensionalization we used in Eq. (5):

ϕ =
4µLVz

(P0 − PL)R2

However, for an infinitely long pipe, our pressure gradient term must be written as a derivative. That is to say:
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−∂P
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2
(18)

Given this, an the fact that ξ = r
R , we can dimensionalize our steady-state solution as follows:
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This gives us the velocity profile for a Newtonian, Incompressible Fluid in an infinitely long pipe.

Question 4 - Transient Solution
Now that we have the steady-state solution, we need to solve the transient case. Recall Eq. (14):
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)
If we use the properties of derivative to separate this, we can see this can be written as:
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In the steady state solution, we found that the first to terms on the right-hand side together become zero. In
addition, we know that the time derivative of the steady-state solution is zero. Together, this simplifies our
equation to:

∂ϕτ
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To solve this, we introduce the separation of variables. We assume that our solution is the product of two functions,
one for each variable. That is to say:

ϕτ = Ξ(ξ)T (τ) (22)

If we substitute this form into our differential equation and rearrange, we can get:

∂(ΞT )

∂τ
=

1

ξ

∂

∂ξ
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ξ
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∂ξ

)
1
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From this equation, since the left is only a function of τ and the right is only a function of ξ, we know that both
sides will be equal to a constant we will call −α2. The negative is imperative for this problem. This variable can
take on any complex value. Given this, we can get two ODEs as follows:

∂T

∂τ
+ α2T = 0 (24)

1

ξ

∂

∂ξ

(
ξ
∂Ξ

∂ξ

)
+ α2Ξ = 0 (25)

Tackling the time equation first, it is clear to see that this has solution:

T = C0e
−α2τ (26)

In addition, we are told that the spatial differential equation has the following solution:

Ξ = C1J0(αξ) + C2Y0(αξ) (27)

From here, notice that we require our solution to remain bounded at ξ = 0. Since Y0(0) goes to infinity, this
condition requires C2 = 0. In addition, we require the no-slip boundary condition to hold, which requires:

0 = C1J0(α) (28)

If we say C1 = 0, we would arrive at the trivial solution of ϕ = 0, which is not physical. Instead, we require that
J0(α) = 0. Since J0 has infinitely many zeros, we will label them with the subscript n. That is to say, J0(αn) = 0
where αn is the nth zero of the Bessel Function. This simplifies our spatial solution to:

Ξ =

∞∑
n=1

C1,nJ0(αnξ) (29)

To enforce the initial condition, we first need to put everything together. Putting our two solutions together, we
get:

ϕτ =

∞∑
n=1

BnJ0(αnξ)e
−α2

nτ (30)

Here, we will consider what the Bessel Functions are and what they do for us here. As can be seen, the Bessel
Functions are the basis functions that provide us solutions when solving problems in Cylindrical coordinates. They
provide the proper shaping for cylindrical coordinates. This helps in providing a closed-form solution for cylindrical
problems.

Question 5 - Initial Condition and Results
Notice that here we have combined our two unknowns into one unknown by Bn = C0C1,n. This is fine since these
were unknown values, so their product is simply one new unknown instead of two unknowns. Our initial condition
states:

ϕ(ξ, 0) = ϕ∞(ξ)− ϕτ (ξ, 0) = 0
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Rearranging, this initial condition requires

1− ξ2 =

∞∑
n=1

BnJ0(αnξ) (31)

To find all the values of Bn that make this relationship true, we take advantage of the Orthogonality of the Bessel
Functions. We are provided the following relationships:∫ 1

0

ξJ0(αnξ)J0(αmξ)dξ = 0 if n ̸= m (R1)

∫ 1

0

ξJ0(αnξ)J0(αmξ)dξ =
J2
1 (αn)

2
if n=m (R2)

d

dξ
[ξpJp(αξ)] = αξpJp−1(αξ) (R3)

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x) (R4)

From here, we can multiply both sides of Eq. (31) by ξJ0(αmξ) and integrate along our domain to arrive at:∫ 1

0

(1− ξ2)ξJ0(αm)dξ =

∫ 1

0

∞∑
n=1

BnξJ0(αnξ)J0(αmξ)dξ (32)

Since the right hand side goes to zero if n ̸= m, we can assume n = m and simplify this to:∫ 1

0

(1− ξ2)ξJ0(αn)dξ =

∫ 1

0

∞∑
n=1

BnξJ0(αnξ)J0(αnξ)dξ (33)

We can also flip the order of the integration and the sum. This means that our right-hand side takes the form of
Eq. (R2) and we can say: ∫ 1

0

(1− ξ2)ξJ0(αmξ)dξ = Bn
J2
1 (αn)

2
(34)

To evaluate this final integral, we will first split it up into to integrals and tackle them one by one. Notice that the
above equation is equivalent to: ∫ 1

0

ξJ0(αmξ)dξ −
∫ 1

0

ξ3J0(αmξ)dξ = Bn
J2
1 (αn)

2
(35)

It is clear from Eq. (R3) that the first integral can be evaluated to:∫ 1

0

ξJ0(αmξ)dξ =
1

αn
J1(αn) (36)

To solve the second integral, we first to integration by parts. We say u = ξ2 and dv = ξJ0(αmξ)dξ. Given this,
integration by parts gives us: ∫ 1

0

ξ3J0(αmξ)dξ =
J1(αn)

αn
−

∫ 1

0

2ξ2

αn
J1(αnξ)dξ (37)

Notice that once again, we are in the form of Eq. (R3). This means that we can evaluate this integral into:∫ 1

0

ξ3J0(αmξ)dξ =
J1(αn)

αn
− 2J2(αn)

α2
n

(38)

If we apply Eq. (R4) for J1(αn) we can see:

J0(αn) + J2(αn) =
2J1(αn)

αn
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We know that J0(αn) = 0 by definition, so we can reduce this to give us J2 as a function of J1. Given this, we can
plug this in for J2 above to get:

J1(αn)

αn
− 2J2(αn)

α2
n

=
J1(αn)

αn
− 4J1(αn)

α3
n

(39)

Now, recall that we wanted to evaluate:∫ 1

0

ξJ0(αmξ)dξ −
∫ 1

0

ξ3J0(αmξ)dξ = Bn
J2
1 (αn)

2

Plugging in the values we got for each integral, we arrive at:

J1(αn)

αn
− J1(αn)

αn
+

4J1(αn)

α3
n

= Bn
J2
1 (αn)

2
(40)

From here, solving for Bn is simple and we get:

Bn =
8

α3
nJ1(αn)

(41)

Putting this all together with the steady state solution and the time-dependent terms we get:

ϕ = (1− ξ2)−
∞∑

n=1

8J0(αnξ)

α3
nJ1(αn)

e−α2
nτ (42)

Below, we have shown the result of plotting the normalized velocity against the radial position at various times.

Figure 1: Flow Profile Evolution

From the above figure, we can see the expected non-dimensional velocity evolution. It is important to note that
we have plotted ϕ on the x axis and
xi on the y axis. The reason we did this, when the problem asks for v/vmax instead is that ϕ is equivalent to this
non-dimensionalization. Let us recall that Vmax is the maximum velocity of the steady state solution. We found
that

ϕ∞ = 1− ξ2

From this, it is clear to see that the velocity is maximized when ϕ is maximized, and that ϕ is maximized when
ξ = 0. Given this, we can say

vmax =
(P0 − PL)R

2

4µL
(43)

From this, it is clear to see that v/vmax = ϕ. As such the above plot is what we expected to get to.
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From the behavior of this graph, and the time stamps on teach curve, we can see that the time it takes to develop
is fairly quick. We know we have reached steady state once we have reached ϕ = 1 at the peak, which has just
about happened at τ = 0.9. However, the time it takes to get to ϕmax ≈ 0.9 is about the same time from the start
at it takes to go from ϕmax = 0.9 to ϕmax = 1. This is expected of the exponential decay nature of the system.

In addition to this "slowing-down" behavior, we can see that during the development region, there is a curved
section near the wall and a constant section near the center. This is a result of the boundary layer growing and
"including" more of the flow in the curved profile. At full development, the boundary layer has not fully developed
to include the entire pipe. As such, section outside of the boundary layer can have the uniform "freestream"
velocity. However, as we go on in time, the boundary layer includes the entire pipe but now the entire system is
still accelerating together. It may be interesting to look if there is a relationship between the entrance length of a
pipe and the time at which we would find a velocity profile with no constant core section. However, this analysis
is beyond the scope of this homework.

MATLAB Code used to visualize the results of this homework is included in the Appendix.
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Appendix

MATLAB Code

1 clear; close all; clc
2
3 %% Numerical Approximations
4 Nterms = 100;
5 Npoints = 50;
6 Ntime = 5;
7
8 %% Basis Values
9 P0 = 10;

10 PL = 0;
11 L = 1;
12 R = 1;
13 rho = 1;
14 mu = 1;
15
16 Vmax = (P0 -PL)*R^2/(4* mu*L);
17
18 %% Spans
19 rset = linspace(-R,R,Npoints);
20 xiset = rset/R;
21 tauset = [0.01, .05, .15 ,.4 ,.9];
22 %% Find Solution
23 % Zeros of the Bessel Function
24 alpha = besselzero (0,Nterms ,1);
25 timeConstant = 1/ alpha (1) ^2;
26
27
28 Bn = 8./( alpha .^3.* besselj(1,alpha));
29
30 % Steady State Terms
31 phiset = zeros(Npoints ,Ntime); % Location , Time Step
32 phiinfty = 1-xiset .^2;
33
34 for i = 1:Ntime
35 phit = zeros(Npoints ,1);
36 for j = 1: Nterms
37 exponential = exp(-alpha(j)^2* tauset(i));
38 bessel = besselj(0,alpha(j)*xiset)';
39
40 phit = phit + Bn(j)*bessel*exponential;
41 end
42
43 phiset(:,i) = phiinfty '-phit;
44 end
45
46 %% Plot
47 set(0,'defaultTextInterpreter ','latex');
48 set(0,'defaultAxesTickLabelInterpreter ','latex');
49 set(0,'defaultLegendInterpreter ','latex');
50 colors = turbo(Ntime);
51 % Plot Phi -xi
52 figure;
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53 hold on;
54 ylabel ("$\xi$");
55 xlabel ("$\ phi$");
56 title(" Nondimensional Velocity Evolution ");
57 for i = 1:Ntime
58 plot(phiset(:,i),xiset ,'DisplayName ' ,"$\tau $="+ num2str(round(tauset(i)*100)

↪→ /100));
59 end
60 legend (" Location"," northeast ");
61 grid on;
62 exportgraphics(gcf ," NondimAll.png");
63 % Dim Time
64 tConst = rho*R^2/mu;
65 figure;
66 hold on;
67 ylabel ("$\xi$");
68 xlabel ("$\ phi$");
69 title(" Nondimensional Velocity Evolution ");
70 for i = 1:Ntime
71 plot(phiset(:,i),xiset ,'DisplayName ',"t="+ num2str(round(tConst*tauset(i)

↪→ *100) /100)+"s");
72 end
73 legend (" Location"," northeast ");
74 grid on;
75 exportgraphics(gcf ," DimTime.png");
76 % Dim All
77 tConst = rho*R^2/mu;
78 figure;
79 hold on;
80 xlabel ("$V$");
81 ylabel ("$r$");
82 title(" Velocity Evolution ");
83 for i = 1: Ntime
84 plot(phiset(:,i)*Vmax ,xiset*R,'DisplayName ',"t="+ num2str(round(tConst*

↪→ tauset(i)*100) /100)+"s");
85 end
86 legend (" Location"," northeast ");
87 grid on;
88 exportgraphics(gcf ," DimAll.png");


