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Problem
This problem asks us to analyze the flow through a pipe with the center portion blocked off by an internal rod.
We will consider a pipe of radius R and a blockage of radius κR. The flow is going upwards against gravity. In
addition, we are considering a flow that is, in the most general case, Non-Newtonian. More precisely, we will be
looking at a power law fluid with constitutive law given by (1).

τij = m (γ̇)
n (1)

We will look at various flow properties when n = 1 and when n = 1.45. When n = 1, we have a Newtonian fluid.
When we have n = 1.45 we have a Non-Newtonian fluid that is shear-thickening since n > 1. If n < 1 we would
have a shear-thinning fluid.

To approach this problem, we will begin with the continuity equation. From there, we will look to understand which
stress components are nonzero in addition to making some fundamental assumptions about our flow behavior to
ensure it is fully one-dimensional. We will apply this to the Cauchy Momentum equations to derive our governing
equations for the flow and find the shear stress profile. Next, we will apply our constitutive law to get the velocity
profile, and then do the proper processing to find any other information we need. Below a list of necessary
assumptions is included for future reference

Assumptions
1. Incompressible

2. Steady-State

3. vr = 0

4. vθ = 0

5. d
dθ = 0

Continuity Equation
To begin, we start with the continuity equation. In cylindrical coordinates, this is given by Eq. (2)

∂ρ

∂t
+

1

r

∂

∂r
(ρrvr) +

1

r

∂

∂θ
(ρvθ) +

∂

∂z
(ρvz) = 0 (2)

Since we have assumed vr = vθ = 0 and we have a steady, incompressible flow, we know that the first three terms
go to zero. In addition, our incompressible assumption allows us to remove the density term from the derivatives.
This simplifies our above equation to:

∂vz
∂z

= 0 (3)

This is the most simplified form of our continuity equation and something we will need to take advantage of in
future steps.

Cauchy Momentum Equation
The next step to this problem is looking at the Cauchy Momentum Equations. This allows us to do a first analysis
without considering our constitutive law yet, simplifying the initial analysis. These equations are comprised of
three components, and each one will require its own treatment. Before we do this, however, we will look at which
components of shear stress we need to consider. We know from class that the strain-rate is defined in cylindrical
coordinates independent of the constitutive law. Given this, we can write the components of our Shear Stress
Tensor as shown in Eq. (4). This form recognizes that the stress matrix will be symmetric.

τ̄ =

τrr τrθ τzr
τrθ τθθ τθz
τzr τθz τzz
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 (4)
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Blank cells are implied by symmetry. Based on Assumptions 3 and 4 and the continuity equation, we see this can
reduce to Eq. (5)

τ̄ = m

0 0
(
∂vz

∂r

)n
0 0

0

 (5)

Now that we know the majority of our stress components are zero, our Cauchy Momentum Equations are simplified
significantly. We will now look at the three different components of the momentum equations and see what each
one tells us about the flow.

One final detail about the behavior of stress can be revealed by taking the derivative in the z Direction. This gives
us the following relationship:

∂τzr
∂z

=
∂

∂z

(
m

(
∂vz
∂r

)n)
= mn

(
∂vz
∂r

)
· ∂

∂r

(
∂vz
∂z

)
= 0 (6)

From Eq. (3), we know that this will go to zero. This information will be important in the following section.

r-Momentum Equation
The r- Momentum Equation in Cylindrical Coordinates is given by:

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r
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1

r
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r

∂τrθ
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− τθθ
r

+
∂τzr
∂z

)
+ ρgr (7)

From Assumptions 3 and 4 we know that the entire left-hand side will be zero. We cannot make any claims about
the pressure yet, but we can say that ρgr = 0 and that all the derivatives of stress are zero either due to Eq. (5) or
Eq. (6). Given this, our r momentum equation reduces to Eq. (8).

∂p

∂r
= 0 (8)

θ-Momentum Equation
The θ-Momentum Equation in Cylindrical Coordinates is given by:

ρ
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r

∂vθ
∂θ

− vθvr
r

+ vz
∂vθ
∂z

)
= −∂p

∂θ
+

(
1

r2
∂(r2τrθ)

∂r
+

1

r

∂τθθ
∂θ

+
∂τzθ
∂z

)
+ ρgr (9)

From Assumptions 3 and 4 we know that the entire left-hand side will be zero. We cannot make any claims about
the pressure yet, but we can say that ρgθ = 0 and that all the derivatives of stress are zero due to Eq. (5). This
reduces our equation to Eq. (10).

∂p

∂θ
= 0 (10)

This fact, combined with our conclusion from the previous section tells us that p is only a function of z. This will
be important when deriving our velocity profile.

z-Momentum Equation
The z-Momentum Equation in Cylindrical Coordinates is given by:

ρ

(
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r
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Due to Assumptions 2,3, 4, and Eq. (3) we know that the left-hand size reduces to zero. Once again, the pressure
remains untouched, however it is important to note that we have established this pressure gradient is only a function
of z. The τrz term says also, while the other two stress terms go away. In addition, we have to keep the gravity
term. This gives us the simplified form of:

∂p

∂z
− ρgz =

1

r

∂(rτzr)

∂r
(12)
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From here, we can solve for the shear stress profile as follows:

∂(rτzr)

∂r
= r
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)
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2
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)
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)
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This shows us that our shear stress profile is independent of our constitutive law. However, the constitutive law
will give us the velocity profiles. To do this, recall Eq. (1) and Eq. (5). From this, we can say:

m

(
∂vz
∂r

)n

=
r

2

(
∂p

∂z
− ρgz

)
+

C1

r
(14)

With some rearrangement, this can be solved for the velocity gradient as:

∂vz
∂r

=

(
r

2m

(
∂p

∂z
− ρgz

)
+

C1

mr

)1/n

(15)

Since we cannot claim that C1 = 0, and we will show for the Non-Newtonian case this is actually not true, we
have to find the integral of this entire term with no simplifications. If one puts this integral into Wolfram Alpha,
the result is a complicated function including a non-elementary function known as the Hypergeometric Function.
Due to a lack of familiarity with the properties of this function, we can essentially claim this is an unsolvable
problem in the general case and would require numerical solutions in some capacity to solve. This means that the
Non-Newtonian case is also not solvable with the information assumed in this class, in general. To demonstrate we
understand the process of solving this problem, we have still completed it for the Newtonian case as this provides
a necessary simplification that enables the discovery of an analytical solution.

Newtonian
In the Newtonian case, we have n=1 which simplifies our differential equation Eq. (15). From the Cauchy-
Momentum Equations, we are able to derive the stress distribution of the fluid along the pipe in the rz direction as
can be seen from Eq. (13). Using Eq. (8) and Eq. (10), because there is no pressure change in the r and θ direction,
we can deduce that pressure is only a function of z; P = P (z) and we can introduce a new variable P2 which is a
sum of the pressure terms in Eq. (15) i.e P2 = ∂p

∂Z − ρgz

∂vz
∂r

=
rP2

2m
+

C1

mr
(16)

The is a simple first order linear differential equation that can be solved analytically.

vz(r) =
r2P2

4m
+

C1

m
ln(r) + C2 (17)

In order to find the value of C1 and C2, two boundary conditions will be applied for the velocity at different radial
locations by use of the no-slip conditions at the walls of the pipe.

v(κR) = 0

v(R) = 0

We can then plug this into Eq. (17) giving us two simultaneous equations as shown below

0 =
R2P2

4m
+

C1

m
ln(R) + C2

0 =
(κR)2P2

4m
+

C1

m
ln(R) + C2
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Solving this, we get the values of C1 and C2

C1 =
R2P2(1− κ2)

4 ln(k)
(18)

C2 = −R2P2

4m

(
1 +

(1− κ2) ln(R)

ln(κ)

)
(19)

These equation values can be used in Eq. (17) to find the exact velocity profile. For the sake of saving space, we
have not included the full equation here but will be included in some future steps.

Figure 1: Velocity Profile at different P2 values given R = 1, m = 0.1 and κ = 0.3

We can use Eq. (12) to obtain an equation for the stress distribution. This first order ODE can be solved for τrz

P2 =
1

r

∂

∂r
(rτrz) (20)

τrz =
rP2

2
+

C1

r
(21)

We already solved for the value of C1 as described in Eq. (18).

τrz = P2

(
r

2
+

R2(1− κ2)

4r ln(k)

)
(22)

Figure 2: Stress Profile at different P2 values given R = 1, m = 0.1 and κ = 0.3
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To find the maximum velocity from here, we can use the fact that the maximum occurs when the velocity gradient
is zero. This also means that this occurs when the shear stress is zero. Given this, we can set τrz = 0 and find the
value of r which makes this true:

0 = P2

(
r

2
+

R2(1− κ2)

4r ln(k)

)
0 =

r2

2
+

R2(1− κ2)

4 ln(k)

−R2(1− κ2)

2 ln(k)
= r2

Rmax = R

√
κ2 − 1

2 ln(κ)
= λR (23)

To find the exact value for the maximum velocity, one would simply plug Rmax into Eq. (17) while using Eq. (18)
and Eq. (19) where necessary. One should let a computer do this math.

To find the average velocity, we simply need to integrate the velocity profile over the cross-sectional area, and then
divide by the total area. This gives us the relationship:

v̄z =
1

π(R2 − (κR)2)

∫ 2π

0

∫ R

κR

(
r2P2

4m
+

C1

m
ln(r) + C2

)
r dr dθ (24)

The θ integral is trivial, but the inner integral requires more attention. However, this can be evaluated with many
techniques or online tools to see the result will be Eq. (25) below.

v̄z = 2P2

[
R2(1− κ)

8m
+R2

(
1 + κ2

) 1

16m
− R2

8m

(
1 +

(1− κ2) ln(R)

ln(κ)

)]
(25)

Finding the Volumetric flow rate from here is trivial, as we just have to multiply the average velocity by the
area. To make these equations smaller, we will define some variables. First, we will define a parameter A for the
cross-sectional area:

A = πR2(1− κ2) (26)
Next we will define a Parameter B to contain the large term in the brackets in Eq. (25):

B =

[
R2(1− κ)

8m
+R2

(
1 + κ2

) 1

16m
− R2

8m

(
1 +

(1− κ2) ln(R)

ln(κ)

)]
(27)

Putting this together, we get the volumetric flow rate as:

V̇ = 2ABP2 (28)

To adjust this equation for a pipe of finite length, we first need to readjust our definition of pressure. Recall that
we said P2 = ∂p

∂Z − ρgz. We will now define P3 = p − ρgzz. This is essentially a pressure term that accounts for
both the static and the hydrostatic pressure at once. We can then notice Pe = ∂P3

∂z . Substituting this into our
volumetric flow rate equation, we arrive at the first step for our finite pipe equations.

V̇ = 2AB
∂P3

∂z
(29)

From here, we need to isolate our derivative and integrate over the entire length L and rearrange to arrive at the
finite length equation:

V̇

2AB
=

∂P3

∂z
Although our pressure is only a function of z, we know that the volume flow rate is constant and therefore the
pressure gradient is constant. This means we get the following relationship:

V̇ L

2AB
= P3,o − P3,i

Rearranging and dropping the 3 subscript and assuming it is applied for this equation gives us:

Po − Pi

L
=

V̇

2AB
(30)

This completes our analysis of a Newtonian Fluid in a Finite Pipe.
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Non-Newtonian
Recall Eq. (15) shown below:

∂vz
∂r

=

(
r

2m

(
∂p

∂z
− ρgz

)
+

C1

mr

)1/n

(15)

If we ask Wolfram Alpha to solve this problem, we get the following general solution:

vz =
nr

(
P2r
2m + C1

mr

)1/n (P2r
2

2C1
+ 1

)−1/n

2F1

(
− 1

n ,
n−1
2n ; 3

2 − 1
2n ;−

P2r
2

2C1

)
n− 1

+ C2 (31)

In this equation, 2F1 represents the Hypergeoemtric function. If we define our domain to ensure r < 1, then we
can say:

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(32)

In this equations, the subscripts on a, b, c represent the rising Pochhammer symbol defined as follows:

(q)n =

{
1 n = 0
q(q + 1)...(q + n− 1) n > 0

(33)

Given this, we can see that this does not have a clean closed form solution that can be exactly valued. The use of
computers would be necessary, and we did not have time to implement this function in time for this assignment.
Therefore, we call this unsolvable within the scope of this class.
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1 Appendix
Below is the code used in the analysis of thIS aasignment

1.1 Plotting the Velocity Profile

1 clear; clc; close all;
2
3 % Define the constants m, kappa , and R
4 m = 0.1;
5 kappa = 0.3;
6 R = 1;
7
8 % Generate values of P2
9 P2_values = [-10, -5, -2, -1]; % Add two intermediate values between 0 and -10

↪→ if needed
10
11 % Define the range of r
12 lb = kappa * R;
13 ub = 1;
14 N = 20;
15 r = linspace(lb, ub , N);
16
17 % Initialize a cell array to store Vz for different P2 values
18 Vz_values = cell(size(P2_values));
19
20 % Initialize variables to store max velocity and its location
21 max_velocity = -Inf;
22 max_location = NaN;
23
24 % Loop through each value of P2
25 for i = 1: length(P2_values)
26 % Define the value of C1 and C2 for the current P2
27 C1 = ((R^2) * P2_values(i) * (1 - kappa ^2)) / (4 * log(kappa));
28 C2 = -((R^2) * P2_values(i)) / (4 * m) * (1 + ((1 - kappa ^2) * log(R)) /

↪→ log(kappa));
29
30 % Calculate Vz for the current P2
31 Vz_values{i} = (r.^2 * P2_values(i)) / (4 * m) + (C1 * log(r)) / m + C2;
32
33 % Find max velocity and its location
34 [max_v , idx] = max(Vz_values{i});
35 if max_v > max_velocity
36 max_velocity = max_v;
37 max_location = r(idx);
38 end
39
40 % Plot Vz for the current P2
41 plot(r, Vz_values{i}, 'DisplayName ', sprintf('P_2 = %d', P2_values(i)), '

↪→ LineWidth ', 2);
42 hold on;
43 end
44
45 % Add labels and legend
46 xlabel('$r$ [m]', 'Interpreter ', 'latex', 'FontSize ', 14);
47 ylabel('$V_z$ [m/s]', 'Interpreter ', 'latex', 'FontSize ', 14);
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48 title('Velocity Profile ', 'Interpreter ', 'latex', 'FontSize ', 16);
49 legend ();
50
51 % Annotate the graph with max velocity and its location
52 text(max_location , max_velocity , sprintf('Max Velocity: %.2f\nLocation: %.2f',

↪→ max_velocity , max_location), ...
53 'HorizontalAlignment ', 'left', 'VerticalAlignment ', 'top', 'Interpreter ', '

↪→ latex');
54
55 grid on;
56 hold off;
57 set(gcf , 'Color', 'w'); % Set current figure background color to white

1.2 Plotting the Shear Stress Profile

1 clear; clc; close all;
2
3 % Define the constants m, kappa , and R
4 m = 0.1;
5 kappa = 0.3;
6 R = 1;
7
8 % Generate values of P2
9 P2_values = [-10, -5, -2, -1]; % Add two intermediate values between 0 and -10

↪→ if needed
10
11 % Define the range of r
12 lb = kappa * R;
13 ub = 1;
14 N = 20;
15 r = linspace(lb, ub , N);
16
17 % Initialize a cell array to store Vz for different P2 values
18 tau_rz_values = cell(size(P2_values));
19
20 % Initialize variables to store max velocity and its location
21 max_velocity = -Inf;
22 max_location = NaN;
23
24 % Loop through each value of P2
25 for i = 1: length(P2_values)
26 % Define the value of C1 and C2 for the current P2
27 C1 = ((R^2) * P2_values(i) * (1 - kappa ^2)) / (4 * log(kappa));
28
29 % Calculate tau_rz for the current P2
30 tau_rz_values{i} = (r * P2_values(i)) / 2 + C1 ./ r;
31
32 % Plot Vz for the current P2
33 plot(r, tau_rz_values{i}, 'DisplayName ', sprintf('P_2 = %d', P2_values(i)),

↪→ 'LineWidth ', 2);
34 hold on;
35 end
36
37 % Add labels and legend
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38 xlabel('$r$ [m]', 'Interpreter ', 'latex', 'FontSize ', 14);
39 ylabel('$\tau_{rz}$ [Pa]', 'Interpreter ', 'latex', 'FontSize ', 14);
40 title('Stress Profile ', 'Interpreter ', 'latex', 'FontSize ', 16);
41 legend ();
42
43
44 grid on;
45 hold off;
46 set(gcf , 'Color', 'w'); % Set current figure background color to white
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