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Executive Summary
In this project, we investigate the impact of flow velocity, represented by the Reynolds Number,
on the convective heat transfer of a plate heat sink using computational fluid dynamics (CFD)
simulations. These simulations allow us to establish a correlation between the Nusselt Number
and Reynolds number, with the exponent associated with the Reynolds number term in the corre-
lation increasing, dependent on the Prandtl number. Our analysis focuses on Reynolds Numbers
on the order of 102, maintaining laminar flow conditions for the plate heat sink. ANSYS Fluent
is employed for these simulations, preceded by verification of its capability to accurately capture
convective heat transfer at these Reynolds numbers through simulations over a flat plate. Com-
parison with correlations from the textbook "Viscous Fluid Flow" by Frank White validates our
approach. Subsequently, we conduct simulations for four heat sink cases to gather sufficient data
points for proposing a tailored correlation for this specific geometry.

Introduction
Through the years, computers have become more powerful and smaller. This leads to a steady
increase in the power density as can be seen in Figure 1. A majority of this energy will be
dissipated as heat, leading to increases in temperature for important components such as the CPU
and GPU. Although these are designed to operate at a large range of temperature, performance
can significantly decrease as we reach the upper range of allowable temperatures. Modern CPUs
are programmed to limit their power draw as they approach their maximum operating temperature
to ensure no damage is sustained. This results in the drop in performance commonly known as
thermal throttling [4]. To keep temperatures under control, research is being done in cooling
systems for computers [3].

Figure 1: Power Density Trends[1]

With the wide range of possibilities in working fluid, geometry, and cost among other variables
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there is still no definitive best way to cool systems yet. This gap is only increasing with advances
in manufacturing techniques such. The development of metamaterials, metal 3D printing, and
advanced composites means a new range of possible design choices exist, much of which is yet to be
explored. Some of these advances, such as metal 3D printing and other advanced manufacturing
techniques, allow heat sinks to take geometries not possible through conventional means. In
all these cases, we would like to compare the maximum temperature and the convective heat
transfer. The maximum temperature can be calculated easily, but comparing convective heat
transfer accurate can be difficult. Instead of using this dimensional value, we instead report
the Nusselt Number, a nondimensional number looking at the ratio of total heat transfer to the
conductive heat transfer.

Nu =
hL

kf
(1)

In this case, h is our convective heat transfer coefficient, L a characteristic length of the system,
and kf is the thermal conductivity of the working fluid. When working on forced convection
systems, we can also use the Reynolds Number, which gives us an understanding of the flow
characteristics, and the Prandtl number which gives us an understanding of the thermal and
momentum diffusivities. These three nondimensional numbers fully characterize our system, and
it is common to write power law correlations (see Eq. 3)

Nu = C ·ReaPrb (2)

At the same Reynolds number, we can consider a heat sink to be better for heat transfer if the
Nusselt Number is higher. Establishing these correlations allows us to compare different heat sinks
outside of cases which we have explicitly analyzed. In this paper, we will use CFD Simulations
to establish a correlation to relate Nusselt Number to Reynolds number. As most computers are
air-cooled, we will assume that the Prandtl number stays constant and only look at the Reynolds
number variation.

Due to the scale of modern heat sinks, the Reynolds Number is often on the order of 102. In this
study, we will look at Reynolds number ranging from 170 to 800. This is well within the Laminar
flow regime. For flows at certain Reynolds number ranges and relatively simple geometries, cor-
relations have already been established. A well known case of this is the convective heat transfer
over a heated flat plate. For this case, the Local Nusselt Number (hx/k at some position X) on
this geometry is given by:

Nux = 0.332Re1/2x Pr1/3 (3)

A flat plate can be used to approximate CPU cooling without any heat sink attached, as a CPU is
thin itself. Improvements could be seen in two factors. Assuming we are using the same working
fluid (Pr = constant), Increases to the exponent of the Reynolds number and increases to the
constant coefficient will result in better average heat transfer.

Problem Formulation
To analyze the fluid flow, we can use the Incompressible Navier-Stokes Equations. Although
temperature changes in air can lead to density differences, causing natural convection, these flow
patterns are of a much smaller order of magnitude than the freestream flow. Natural convection
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generally has a speed on the order of 10−3, very small in comparison with our forced flow.
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Since we are ignoring the influence of gravity in this driven flow, we can drop the last term. If we
then nondimensionalize these equations with a reference length L, a reference velocity U and the
viscosity µ, one can show that the nondimensional Navier Stokes Equations Become:

∇⋆ · u⃗⋆ = 0 (Continuity)
∂u⋆

∂t⋆
+ u⃗⋆ · ∇⋆u = −∂p⋆

∂x⋆
+

1

Re
∇⋆2u⋆ (X-Momentum)
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1

Re
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(4)

Where
u⃗⋆ =

u⃗

U
(5)

and other similar nondimensionalizations. From this nondimensionalization, we can understand
why the Nusselt number primarily depends on the Reynolds Number.

In addition using the Navier-Stokes equation to model the fluid flow, we need to include the Energy
equation to model the temperature transport.

∂T

∂t
+ u⃗ · ∇T = α∇2T (Energy Equation)

These equations are all coupled. While the Navier-Stokes equations have two-way coupling, where
all equations are coupled with all other equations, the Energy equation only has one-way coupling
as temperature does show up in the Navier-Stokes equations. This means that the Navier-Stokes
equations can be solved first and the velocity information used in the heat equation to advance
the temperature. This is done in ANSYS using the SIMPLE algorithm.

If we nondimensionalize the energy equation just as we did the Navier-Stokes equations, the result
is below. From the equation, we see the only parameters that can be controlled are the Reynolds
and the Pradtl Numbers. This is shows us why, in addition to Reynolds Number, our correlation
can depend on Prandtl Number. However, since we will be using a constant working fluid (air)
for our entire analysis, this can be ignored.

∂T ⋆

∂t⋆
+ u⃗⋆ · ∇⋆T ⋆ =

1

RePr
∇⋆2T ⋆ (6)
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From this, we can define our Nusselt Number at the surface as:

Nu =
hL

k
=

∣∣∣∣∂T ⋆

∂y⋆

∣∣∣∣
y⋆=0

(7)

In this case y⋆ = 0 does not necessarily mean y = 0, but instead the surface of heat sink. Once
this is calculated, we can get the area averaged Nusselt Number as:

Nu =
1

A

∫∫
NudA (8)

Where we integrate over the surface of the heat sink.

We know that we have 5 Unknowns in temperature, pressure, and 3 components of velocity. The
Momentum, Continuity, and Energy equations give us 5 equations for these unknowns, allowing
us to solve this system. However, due to the complexity of this geometry and the type of flow, this
is not a problem that can be solved by hand. This is why we use computational fluid dynamics
(CFD) to solve the problem.

The idea with CFD is to break our domain of interest up not many control volumes. We then
assume that the properties of our fluid are constant in each of these small control volumes. We
then solve the differential equation on this discretized domain. The method used by ANSYS
Fluent is the Finite Volume Method, which integrates our governing equation over each control
volume (with the constant properties assumption) and gets a large system of equations. This can
then be solved using a nonlinear equation solver to get a final result. The Nonlinear solver ANSYS
uses is the SIMPLE method with Pseudo-Time Stepping for steady problems. To use this method,
ANSYS assumes the problem is unsteady and integrates in time until a steady state solution is
reached. In each time step, ANSYS solves the governing equations on each control volume many
times until our residuals are below a certain threshold. This gives us a result that is accurate and
stable within a reasonable time.

Although the methods ANSYS, as with most commercial software, use are almost unconditionally
stable, convergence of residuals does not necessarily imply a trustworthy solution. A good quality
mesh (Our discretized domain) is required to get trustworthy results. In addition, proper selection
of the models, settings, and boundary conditions are required to make sure that the simulation
reflects reality as closely as possible. As such, it is important to validate all methods to ensure
they give trustworthy results. For our problem, we need to ensure that ANSYS can capture forced
convection heat transfer well. As we discussed before, a canonical case of forced convection heat
transfer is the flat plate thermal boundary case. This case has a well-established solution and
well-defined boundary conditions.

Given the fundamental equations, boundary conditions are needed to use. Below, one can see the
geometry we will be analyzing. This is a plate heat sink on the scale of common CPUs. There is a
square base size of approximately 40mmx40mm, a plate height of 25mm, a pin spacing of 3.3mm,
and a pin width of 1mm. The fluid domain was established to ensure no numeric boundary effects
will influence the flow.
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Figure 2: Geometry

First, we will look at our flow boundary conditions. At the inlet, we prescribe a flow velocity
corresponding to each Reynolds number. At the outlet, we prescribe a pressure outlet. This is a
simple outlet that allows for backflow if necessary. On the bottom surface and all the heat sink
surfaces we apply a no slip condition. Finally, on the sides of the domain we apply a freestream
symmetry boundary condition as we assume these boundaries are far enough away to have little
influence on the flow near the heat sink.

We also need boundary conditions for the energy equation. At the Inlet, we prescribe a temperature
of 20C, corresponding to room temperature. At all other walls except the heat sink, we prescribe
an adiabatic condition. To treat the Heat sink surface requires a little bit more thought. For
analysis of computer components, we are often provided a heat flux applied to the bottom of the
heat sink, but this is not uniformly emitted on the surface of the heat sink. To see how this varies,
what is required is to mesh the heat sink and solve the heat equation for the solid heat sink also.
This means that we have two heat equations to solve, one for the fluid domain and one for the
heat sink domain. By solving the heat sink heat equation with convection boundary conditions
on the fluid surfaces and our prescribed heat flux (18,750 W/m2) at the bottom surface, we can
get the temperature distribution of the heat sink. From here, we can assign this temperature to
the fluid on the heat sink boundaries. This is done through ANSYS by doing an explicit coupling
of these systems.

Now that we understand our boundary conditions, it is important to make a good mesh for this
problem. Since ANSYS has a mesh limit of about 1M cells, we got as close to the maximum
allowable cell count, at around 900K cells. This gives us a mesh that is fine enough to resolve all
the flow properties necessary. Now that we have a fully defined problem, we can simulate to get
results. However, before we simulate the full system, we need to validate our system. This serves
to ensure ANSYS Fluent, with our current settings, can capture forced convection heat transfer
accurately.
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Validation
To validate our system, we ran a sample simulation of a laminar flat plate thermal boundary layer.
As discussed before, the local Nusselt Number correlation for this problem is well known.

Nux = 0.332Re1/2x Pr1/3

By simulating this system in ANSYS, we can get the local Nusselt Number also. The mesh for
this problem can be seen in Figure 5 of A1. The inlet flow velocity was picked to correspond to
Rex ranging from 0 to 1000, around what we expect the heat sink Reynolds number to be.

Figure 3: Flat Plate Nusselt Number

One can see the Nusselt Number as a function of Rex for both the ANSYS simulation and the
correlation in 3. We see good agreement between the established correlation and our simulation
results. This tells us that ANSYS Fluent is fully capable of analyzing forced convection problems
and accurately finding the Nusselt Number.

In addition to accurately finding the Nusselt Number accurately, we can see that the temperature
profile also shows the clear development of the thermal boundary layer as expected (A1, Fig. 6).
This shows us that we can also trust the temperature profiles we will get from the analysis of our
heat sink.

Given this validation study, we know that we can trust the Nusselt Number and maximum tem-
perature results we get from our simulation of the heat sink. It also reinforces the credibility
and effectiveness of our computational approach in analyzing and optimizing heat sink designs for
enhanced convective heat transfer performance.
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Results
We can the simulations of the Heat sink to a steady state solution. This was done using the
SIMPLE algorithm and by keeping track of residuals of energy, momentum, and mass. All residuals
converged to our threshold of 10−3. We also kept track of the Residual of our Nusselt number and
average heat sink temperature to ensure they do not vary significantly once we reach steady state.
These values also converged with our simulation.

We can four cases of our simulation, corresponding to Re = 170, 400, 600, 800. We calculated the
area averaged Nusselt Number. Results for this are shown in Table

Re 170 400 600 800
Nu 945 1676 2250 2829

Table 1: Nusselt Number Results

We can use Desmos to do Least Square Curve Fitting to fit our Nusselt Number to the form
Nu = C · Ren. Doing this, we can values of C = 22.24, n = 0.72. Although it may be difficult
to compare this to other values, as our characteristic length was set to 1 by default in ANSYS,
we can compare the growth behavior easily as this is encapsulated in the exponent. Recall that
for the flat plate case, we have an exponent for our Reynolds Number of 0.5. However, for this
case we have a value significantly larger than this. This information tells us that having a heat
sink allows us to get more heat transfer out of the same increase in flow speed. Since the flow is
normally induced by a fan we must power, this is essentially telling us we get significantly more
heat transfer per unit of power we supply for cooling.

Figure 4: Nusselt Number Curve Fit

We can also look at the maximum temperature on the heat sink at each time. This is directly
proportional to the temperature of our CPU, and will allow us to get another idea of the efficiency
of our heat sink.
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Re 170 400 600 800
Tmax [C] 89 58 48 42

Table 2: Nusselt Number Results

As can be seen, increasing the Reynolds number by increasing the flow velocity directly leads to
a decrease in the maximum temperature. Doing a similar curve fitting, the following relationship
can be developed:

Tmax = 1095Re−0.49 (9)

By looking at the Midline Velocity Contours in teach simulation, we can see that although he flow
fields seem similar, the velocity gradients increase as we go up in Reynolds number. As a result,
we know that this can lead to greater energy transport. This is the driving force in reducing the
temperature.

Looking at the behavior of Nusselt number on the heat sink, we see that, just like in the flat
plate cases, the Nusselt number is high at the front. This is more clearly seen in the Nusselt
Number curves taken along the top of the central pin for each simulation. In these graphs, we see
that although the Local Nusselt number decreases quickly, there is a significantly higher Nusselt
number at the front of a pin.

Conclusion
From our analysis, we know we that a heat sink has a significant influence in increasing the
convective heat transfer. This was encapsulated in the increase of the exponent associated with
the Reynolds number term in the Nusselt Number correlation. The increased cooling effectiveness
leads to a decrease in the maximum temperature. For a real computer, this would lead to better
performance in two ways. For a constant power draw, our temperature would be lower which
prevents thermal throttling. For a given ideal operating temperature, improved heat sinks lead to
more power being able to be drawn by the CPU, increasing performance.

Although this analysis gives good insight into the performance of this specific geometry and
conditions, there is still further work that can be done. A first step would be to introduce different
working fluids and get an understanding of how Prandtl number influences this correlation. By
doing this, we can change our model to account for other possible working fluids such as water or
specialized fluids.

If one is to use a different working fluid, different limitations can be applied. With air, we assumed
a symmetry boundary conditions on most of our sides, as a fan inducing flow often does not restrict
the air in any way. As such, the air can flow out easily. If one is using water as a coolant, piping
is necessary to keep the water in control and in cycle. As such, different boundary conditions may
need to be used in a simulation in addition to changing the enclosure geometry. Although the heat
sink geometry itself may not change, this change in surrounding geometry can have a significant
impact on the transport properties. Recall that water in a pipe generally has a parabolic velocity
profile if it is laminar. In these cases, our inlet velocity profile would also need to change.

In designing a high power computing system, our only concern may not be simply maximizing heat
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transfer. Cost is a significant factor, especially in larger systems. For example, many high power
computing (HPC) systems need cooling systems. Although liquid cooling is often considered more
efficient, not all HPC systems use liquid cooling as it can be expensive. In addition, the work
required to pump the fluid through a large system will often be greater than the work required
to use a fan to slightly accelerate air. This means that there is also a continuously increased cost
due to the increased work required to induce the necessary flow rates. Similarly, the geometry
we analyzed is relatively simple and would be cheap to manufacture in bulk. If a more complex
geometry was to be used, increased manufacturing costs would also need to be considered. A full
scale analysis of a cooling system should include all of the components and may look at factors
such as the heat transfer per dollar, heat transfer normalized by pump/fan work, or a Return on
Investment analysis.

In addition to this, a wider range of Reynolds numbers should be analyzed to get a full understand-
ing of our heat transfer. If one was to assume the correlation we discovered held for all Reynolds
number, error would accrue. To get an idea of this, consider the Nusselt Number correlations for
a cylinder. These are given in Table 3

Re Range Correlation
0.4-4 NuD = 0.989Re0.33D Pr1/3

4-40 NuD = 0.911Re0.385D Pr1/3

40-4,000 NuD = 0.683Re0.466D Pr1/3

4,000-40,000 NuD = 0.193Re0.618D Pr1/3

40,000-400,000 NuD = 0.027Re0.805D Pr1/3

Table 3: Cylinder in Cross Flow Correlations

As can be seen, the correlation for different Reynolds Number ranges changes. A similar analysis
should be done for our geometry to understand the full range of possibilities.

Overall, we can see that CFD is a powerful tool in analyzing complex geometries with multiple
physical mechanisms. Numerical methods allow engineers to get insight into these complex prob-
lems that cannot be found easily with hand calculations and could sometimes be expensive to set
up experimentally.
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Appendix

A1. Flat Plate Thermal Boundary Figures

Figure 5: Flat Plate Boundary Layer Mesh

Figure 6: Flat Plate Thermal Boundary Layer

A2. Mesh

Figure 7: Mesh Image
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A3. Heat Sink Results

Re 170

Figure 8: Heat Sink Temperature

Figure 9: Midline Temperature

Figure 10: Midline Velocity
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Figure 11: Local Nusselt Number

Figure 12: Nusselt Number at Top of Pin

Re 400

Figure 13: Heat Sink Temperature
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Figure 14: Midline Temperature

Figure 15: Midline Velocity

Figure 16: Local Nusselt Number



Spring 2024 Page 15 of 18

Figure 17: Nusselt Number at Top of Pin

Re 600

Figure 18: Heat Sink Temperature

Figure 19: Midline Temperature
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Figure 20: Midline Velocity

Figure 21: Local Nusselt Number

Figure 22: Nusselt Number at Top of Pin
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Re 800

Figure 23: Heat Sink Temperature

Figure 24: Midline Temperature

Figure 25: Midline Velocity



Spring 2024 Page 18 of 18

Figure 26: Local Nusselt Number

Figure 27: Nusselt Number at Top of Pin


