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1 Introduction

1.1 Overview
In a linear sense we are able to solve for an equation Ax = b using methods like LU Decomposition as discussed in
the previous assignment. However, when we are posed with a non-linear equation, we have to use other methods
that focus on iterative schemes. Newtons Method is a Fixed Point Iteration (FPI) method that uses derivatives
to solve for the solution to a curve. Given a curve, we know that the tangent line is a really good approximation
to the curve at that particular point. Even though the root may be far from the actual point of intersection on
the x-axis, we are able to repeat the derivative calculation many times until we get as close as possible to the real
solution which is what we call convergence.

The things to consider when using this iteration method is the domain of convergence and the order of conver-
gence. This convergence can be explained using the Contraction Mapping Theorem which implies that for any
closed and bounded set of functions that map a closed and bounded region R ∈ Rn into itself and in this region
R there is a unique solution to the equation. For the domain of convergence, the Mean Value Theorem states
that for any continuously differentiable function over an interval, there is an intersection of this interval from the
Contraction Mapping theorem that gives the domain of convergence. Its worth noting that we expect newtons
method to converge quadratically.

The first step taken in newtons method is finding an initial guess for the solution which most likely end up
converging and this might be a problem for certain cases. In a general sense Eq. (1) shows how newtons method
works with the k + 1 term being the next guess.

xk+1 = xk +R(xk) (1)

There many different subcategories of Newtons Method and in our case, we will focus on the Adaptive Newton
Method. This method involves computing Simple Newton for a while and periodically updating the derivative
matrix called the Jacobian.

In this assignment we are to use newtons method to solve the non-linear 2D BVP for different λ values Eq. (2)
using Analytic and Arc Length Continuation. We will also discuss the timing analysis of the methods used

∇2u+ λu(1 + u) = 0 (2)

2 Problem Setup and Formulation

2.1 Finite Difference Analysis
We have been tasked to analyse a 2D Boundary Value Problem (BVP) in the domain D = (0 ≤ x ≤ 1)∪(0 ≤ y ≤ 1)
provided by Eq. (2) and the first step is to discretize the problem using a center difference which can be written as

∂2u

∂x2
+

∂2u

∂y2
+ λu(1 + u) = 0 (3)

with u = 0 on all boundaries. The equation is not linear in the sense that we have a quadratic term u and we have
to vary the value of lambda over a range of 0 ≤ λ ≤ 60. Our problem will be defined by a 30 by 30 grid which
gives a total of 900 by 900 points since this is a two dimensional problem. When discretized, we have

ui+1 − 2ui + ui−1

h2
x

+
ul+n − 2ui + ul−n

h2
y

+ λui(1 + ui) = 0 (4)

where n = 30, hx = 1
n−1 = hy = h so we can say h = 1

29 . As for the index value l, we can define it by Eq. (5) with
i being the ith row and j the jth column

l = (j − 1)(n+ 1) + i (5)

This form allows to write out a linear equation in the form Ax = b which can be solved using linear methods. This
however, does not provide a direect solution to the problem we use approximations as the initial inputs to the ui

values. The next step would be to use Newtons method that requires an inital guess. We also know that the actual
equation created from discretization is Jδ = −R.
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2.2 Newtons Method
In section 1.1, we gave a general overview of what happens in a newton iteration. Here we will provide a much
more specific work flow of her dimensional cases. We call a function R(x) the residual function and when expanded
using a taylor series approximation, we can say

R(x) = R(x0) +
∂R

∂x

∣∣∣∣
x0

(x− x0) +H.O.T = 0 (6)

R(xk+1) = R(xk) +
∂R

∂xk

∣∣∣∣
xk

(xk+1 − xk) +H.O.T = 0 (7)

Rearranging equation 9 we can rewrite this equation as

∂R

∂xk

∣∣∣∣
xk

(xk+1 − xk) = −R(xk) (8)

This is how we obtained the equation stated in the previous section with the residual function given as R(x)
and J is the jacobian matrix.

Jδxk = −R(xk) (9)

After deriving these matrices, our next goal will be to create an initial guess and start with an initial lambda value.
The delta values we obtain are then added to the previous ones to get a newer values which are then used in the
newer iteration until convergences occurs.

2.3 Initial Guess
In order to run the newton algorithm, we need to guess an initial input for ui. The simplest way of obtaining this
is buy linearising Eq. (2)

∇2u+ λu = 0 (10)

This equation, from it structure, can be termed as an eigenvalue problem. We need to solve for the non-trivial
solution to have relevant results. Eigenvalue problems have a known solution and in this case we have an equation
that is a solution where x and y are locations in the grid. Here A is unknown and we guess a value of 0.1 as lambda
comes from the left and m and n are positive integers

u(x, y) = Anmsin(nπx)sin(nπy) (11)

λ = π2(m2 + n2) (12)

In this problem we have been given a range of lambda values 0 ≤ λ ≤ 60 so our values of m and n are restricted
i.e.

1. For m = 1 and n = 1 we have λ = 2π2 = 19.739

2. For m = 1 and n = 2 we have λ = 5π2 = 49.348.

3. For m = 2 and n = 1 we have λ = 5π2 = 49.348

Even though the last two lambda values are identical, their solution branch is different and will be seen in the
final results. After this initial guess is obtained, it is passed to the newton function to obtain values that converge
given a tolerance. It will be seen from the figure below that for our first case, there is only one peak (could also be
a valley depending on A but in the other two cases, there will be one peak and one valley and the only difference
will be their orientation. The contour plots shown below plot initial guess and the converged case and as expected,
the results are almost identical. The values of lambda chose that are close to the actual values are 19.5 and 49.0
for the other two cases.
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(a) Initial Guess (b) Converged Guess

Figure 1: Contour Plots for m = 1 and n = 1

(a) Initial Guess (b) Converged Guess

Figure 2: Contour Plots for m = 2 and n = 1

(a) Initial Guess (b) Converged Guess

Figure 3: Contour Plots for m = 1 and n = 2
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2.4 Analytical Continuation
Previously, we were able to solve for a particular value of lambda after getting a solution that converged with
Newton’s Algorithm. Now, we want to increase lambda which gives us another u vector.

unew = uold +
∂u

∂λ

∣∣∣∣
λold

∂λ (13)

In order to get ∂u
∂λ , we can use the residual and jacobian matrices to solve linearly as shown below. The R derivative

is simply taken with respect to λ

J
∂u

∂λ

∣∣∣∣
λ(old)

= −∂R

∂λ

∣∣∣∣
λold

(14)

Since we choose a value of ∂λ and we obtained a result from Eq. (14), are then able to solve Eq. (13) to get newer
values.

2.5 Arc Length Continuation
In some cases, Analytic Continuation fails when we encounter bifurcation points where the slope is zero. In order
to correct this, we use arc length continuation which is more like solving for a straightened curve or tracing out
the curve. The first stage is creating an augmented jacobian matrix that is padded with specific vectors and also
creating an augmented residual matrix that is differentiated with respect to a new variable, s. The full process is
describe in the assignment document so only the main equations will be stated in this report.

Ĵ =

(
∂R
∂u

∂R
∂λ

∂ν
∂u

∂ν
∂λ

)
(15)

R̂ =

(
∂R
∂s
∂ν
∂s

)
(16)

Eq. (15) and Eq. (16) can then be solved linearly as shown

Ĵ

(
∂u
∂s
∂λ
∂s

)
= R̂ (17)

Its worth noting that the step size of s ,ds, is a chose variable and in this case we chose 0.1 and is constant in
all our iterations. The results are then run through a new newton loop that takes into account this augmentation.
In order to calculate for convergence, we used the l2-nor which was discussed in the previous assignment. After
every loop, we multiply the result by ds and add the knew delta values to the previous ones to provide a new step.
Further information can be see in the code section of the appendix

3 Results

After a series of trial and error to see which initial lambda guesses would produce a continuous curve, λ = 19.1,
λ = 49.6 and λ = 49.6 were the values chosen. The table below summarizes the lambda values.

m =1 n=1 m = 1 n=2 m=2 n=1
λguess = 19.1 λguess = 49.6 λguess = 49.6
λactual = 19.7392 λactual = 49.348 λactual = 49.348

In the first branch, since the guessed value is less that the actual known value of lambda, we are able to perform
arc length continuation to the right of the curve produced which will give positive norm values. When we move to
the left, the norm values are expected to be negative as seen from the norm plot below. In the other two cases, we
chose an initial lambda guess that was on the right so we would expect the norm values to be negative as we move
towards the actual guess.

At first glance, it may seem like the our last two branches would produce the same result but we are able to
differentiate them using contour plots. In the l2-norm plot below, their norm values lie over each other. Despite
changing the A value in the initial guess, this will always be the result.
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Figure 4: l2 Norm versus Lambda

In the figure below, we show contour plots for three different branches at chosen lambda values i.e. λ = 30.1085
and λ = 60.0104. In to demonstrate why we obtained the same norm for the last two branches, we use the same
lambda value but the only difference we will observe is the orientation of the valleys and peaks. As mention before,
figure 5a shows a hill because value of lambda is greater that 2π2. For the last two branches, when compared
to figures 2b and 3b, the plots show that they have greater peaks than valleys. If more plots are shown for an
increasing lambda value closer to the known eigenvalue, we will notice the trend from the hills and valley being
symmetric in the graph to what is seen below.

In figures 5a and 6a we note that the difference is that as we choose a lambda value less than 2π, we obtain a
valley whereas if greater than, we have a mountain

(a) Branch 1 m = 1 and n = 1 (b) Branch 2 m = 2 and n = 1 (c) Branch 2 m = 1 and n = 2

Figure 5: Contour Plots for the 3 different branches

(a) Branch 1 m = 1 and n = 1 (b) Branch 2 m = 2 and n = 1 (c) Branch 2 m = 1 and n = 2

Figure 6: Contour Plots for the 3 different branches
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4 Conclusion

In summary, we had been given a non-linear 2D Boundary Value Problem that we could not solve using linear
methods. We implemented an iterative scheme using Newtons method to solve for convergence. The first step we
took was finding an initial guess for the solution given a lambda range. When the equation is linearized, we are
able to obtain a solution that has eigenvalues,lambda. From this, we are only able to obtain 3 lambda values that
fall within the range with two of them being equal.

The initial guesses are passed through newton’s loop for convergence and then analytic continuation which gives
the next point. But because we are likely to get a point where the derivative is zero, the linear equations solved
using the residual and the jacobian are unsolvable. Hence we rely on arc length continuation which helps us when
we encounter these bifurcation points. From this point onward, we used an augmented newtons loop to solve for
different lambda values to obtain new solutions.

From the 3 branches we obtained, we noted that in the last two branches where m = 2, n = 1, m = 1, n = 2 we
observed that increasing the lambda values from the known eigenvalue produced a greater peak intensity. The only
notable difference is the orientation rotation of 90 degrees. The first branch with equal m and n values produced
either a peak of a value depending on what lambda value is chosen.
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5 Appendix

Below is the code used in the analysis of the problem

5.1 Main Function

1 % Thisis the main script that runs all the code and generates the norm vs
2 % lambda plots
3
4 close all;clear;clc
5
6 n = 30;
7
8 %call function that solves for all the initial guesses. Here we have thress
9 %cases so we have to loop through all the cases (3)

10 u_mat = initial_guess(n);
11
12 lambda1 = 19.1;
13 u1 = u_mat (:,1);
14 %for the forward direction
15 ds = 0.1;
16 dLambda = 0.1;
17 [u_normsf1 , myLambsf1] = getNorms(n,u1,lambda1 ,ds ,dLambda);
18 ds = -0.1;
19 dLambda = -0.1;
20 %for the backward direction
21 [u_normsb1 , myLambsb1] = getNorms(n,u1,lambda1 ,ds ,dLambda);
22
23 %Change the vectors by concatination and plot
24 myLambs1 = [fliplr(myLambsb1) myLambsf1 ];
25 u_norms1 = [fliplr(u_normsb1) u_normsf1 ];
26 minInd = find(u_norms1 ==min(u_norms1));
27 next = minInd +1;
28 u_norms1(next:end) = -u_norms1(next:end);
29 plot(myLambs1 ,u_norms1 ,'k-','LineWidth ' ,1.5)
30 hold on
31
32
33 lambda2 = 49.6;
34 u2 = u_mat (:,2);
35 %for the forward direction
36 ds = 0.1;
37 dLambda = -0.1;
38 [u_normsf2 , myLambsf2] = getNorms(n,u2,lambda2 ,ds ,dLambda);
39 %for the backward direction
40 ds = -0.1;
41 dLambda = -0.1;
42 [u_normsb2 , myLambsb2] = getNorms(n,u2,lambda2 ,ds ,dLambda);
43
44 myLambs2 = [ fliplr(myLambsb2) myLambsf2 ];
45 u_norms2 = [fliplr(u_normsb2) u_normsf2 ];
46 minInd = find(u_norms2 ==min(u_norms2)); %twice equal values
47 next = minInd (1) +1;
48 u_norms2(next:end) = -u_norms2(next:end);
49 plot(myLambs2 ,u_norms2 ,'m-','LineWidth ' ,1.5)
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50
51 hold on
52
53
54
55 lambda3 = 49.6;
56 u3 = u_mat (:,3);
57 %for the forward direction
58 ds = 0.1;
59 dLambda = -0.1;
60 [u_normsf3 , myLambsf3] = getNorms(n,u3,lambda3 ,ds ,dLambda);
61 %for the backward direction
62 ds = -0.1;
63 dLambda = -0.1;
64 [u_normsb3 , myLambsb3] = getNorms(n,u3,lambda3 ,ds ,dLambda);
65
66 myLambs3 = [fliplr(myLambsb3) myLambsf3 ];
67 u_norms3 = [fliplr(u_normsb3) u_normsf3 ];
68
69 minInd = find(u_norms3 ==min(u_norms3)); %twice equal values
70 next = minInd (1) +1;
71 u_norms3(next:end) = -u_norms3(next:end);
72 plot(myLambs3 ,u_norms3 ,'g--','LineWidth ' ,1.5)
73
74 xlabel('')
75 legend ('\lambda = 19.1','\lambda = 49.6','\lambda = 49.6')
76
77 title('Norms vs Lambda ','fontweight ','bold','fontsize ' ,16);
78 xlabel('\lambda ','fontweight ','bold','fontsize ' ,16);
79 ylabel('||u||_{2}','fontweight ','bold','fontsize ' ,16)
80 exportgraphics(gcf ,'normplot.jpg')

5.2 Initial Guess Script

1 %This script generates the inital guesses for the lambda values
2 %given our range of values , we have three possible solutions to get a
3 %lambda value less than 60 exculding zero
4
5 function u_mat = initial_guess(N)
6
7 %we have u = Asin(n*pi*x)sin(m*pi*y)
8 m_vec = [1 1 2];
9 n_vec = [1 2 1];

10
11 %create vector to store possible lamda values
12 lambda_vec = zeros(1,length(m_vec));
13
14 %preallocate initial values vector
15 A = 0.1;
16 u0 = zeros(N^2,1);
17 u_mat =zeros(N^2,3);
18
19 for ii = 1: length(m_vec)
20 m = m_vec(ii);
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21 n = n_vec(ii);
22 lambda = pi^2 *(m^2 + n^2); %calculate current value of lambda
23
24 %store lambda values in vector
25 lambda_vec(ii) = lambda;
26
27 for jj = 1:N
28 for kk = 1:N
29 l = (kk -1)*N + jj;
30
31 x = (jj -1)/(N-1);
32 y = (kk -1)/(N-1);
33
34 u0(l) = A * sin(n*pi*x) * sin(m*pi*y);
35
36 end
37 end
38
39 u_mat(:,ii) = u0;
40 u0 = [];
41
42 end
43
44
45
46 end

5.3 Initial Guess Plotting Script

1 %This script plots the initial and converged u values
2 close all
3 ind =3;
4 n = 30;
5 [u_mat ,lambda_vec] = initial_guess(n);
6 guess = u_mat(:,ind);
7 guess = (reshape(guess ,[n,n]));
8 lambda = lambda_vec(ind);
9

10 figure
11 contourf(guess ,n)
12 colorbar
13 colormap (" turbo")
14 xlabel('\bf X Nodes ')
15 ylabel('\bf Y Nodes ')
16 title(['Initial Guess for \lambda = ', num2str(lambda)])
17 exportgraphics(gcf ," guess m1n2 .jpg")
18
19 % Use Newton function to calculate the new J and R values
20 lambda1 = 49.6;
21 [J,R,u00 ,counter] = NewtonsMeth(n,u_mat(:,ind),lambda1);
22 u1 = (reshape(u00 ,[n,n]));
23
24 figure
25 contourf(u1 ,n)
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26 colorbar
27 colormap (" turbo")
28 xlabel('\bf X Nodes ')
29 ylabel('\bf Y Nodes ')
30 title(['Converged Guess for \lambda = ', num2str(lambda)])
31 % name = num2str(n);
32 % name = convertCharsToStrings(name);
33 exportgraphics(gcf ," Converged m1n2 .jpg")

5.4 Jacobian and Residual Function

1 %This function creates the Jacobian and R matrices
2 %INPUT: n is the grid dimension
3 % u is the initial guess and lambda
4 function [J,R] = BVP_2DSol(n,u,lambda)
5
6 %Equal in the x and y spaces
7 nx = n-1;
8 ny = nx;
9 hx = 1/nx;

10 hy = 1/ny;
11
12 %Preallocate J and R matrix (Ax = b)
13 J = zeros(n^2,n^2);
14 R = zeros(n^2,1);
15
16 %Populate the matrix
17 for ii = 1:n %loop through ith row
18 for jj = 1:n %loop through the columns of ith row
19
20 %define the indexing
21 l = (jj -1)*n + ii;
22
23 if (ii == 1 || jj == 1 || ii == n || jj == n)
24 J(l,l) = 1;
25 R(l) = u(l);
26 else
27 %filling the matrix by first choosing a column and going up
28 %through the rows
29 %in the x direction
30 J(l,l) = - 4/(hx^2) + lambda *(1+2*u(l));
31
32 J(l,l+1) = 1/(hx^2);
33 J(l,l-1) = 1/(hx^2);
34
35 %in the y direction
36 J(l,l-n) = 1/(hy^2);
37 J(l,l+n) = 1/(hy^2);
38
39 R(l)= ((u(l+1) - 2*u(l) + u(l-1))/(hx^2)) + ((u(l+n) - 2*u(l) + u(l

↪→ -n))/(hy^2)) + (lambda * u(l) *(1 + u(l)));
40 end
41
42 end
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43 end
44
45 end

5.5 Analytic Continuation Function

1
2 function u = analytic_continuation(u0,d_lambda ,n,lambda)
3
4 [J,~] = BVP_2DSol(n,u0 ,lambda);
5
6 %First we have to find dR_dL
7 dR_dL = zeros(n^2,1);
8
9 %Populate the matrix

10 for ii = 1:n %loop through ith row
11 for jj = 1:n %loop through the columns of ith row
12
13 %define the indexing
14 l = (jj -1)*n + ii;
15
16 if (ii == 1 || jj == 1 || ii == n || jj == n)
17 dR_dL(l) = 0;
18 else
19 dR_dL(l) = (u0(l))^2 + u0(l);
20 end
21
22 end
23 end
24
25 %next we solve the linear equation
26 du_dL = J\-dR_dL;
27
28 %GET NEW U VALUE
29 u = u0 + du_dL * d_lambda;
30
31 end

5.6 Arc Length Continuation Function

1 % This function performs arc length continuation
2
3 function [u2 ,lambda2] = arc_length_continuation(u1 ,u0,lambda1 ,lambda0 ,n,ds)
4
5 [J,~] = BVP_2DSol(n,u1 ,lambda1);
6 % Preallocate a n^2+1 by n^2+1 matrix
7 J_aug = zeros (1+n^2,1+n^2);
8
9 %Fill the matrix accordingly

10 J_aug (1:n^2,1:n^2) = J;
11
12 %First we have to find dR_dL
13 dR_dL = zeros(n^2,1);



Spring 2023 Luyando Kwenda, Page 14 of 19

14
15 %Populate the matrix
16 for ii = 1:n %loop through ith row
17 for jj = 1:n %loop through the columns of ith row
18
19 %define the indexing
20 l = (jj -1)*n + ii;
21
22 if (ii == 1 || jj == 1 || ii == n || jj == n)
23 dR_dL(l) = 0;
24 else
25 dR_dL(l) = (u1(l))^2 + u1(l);
26 end
27
28 end
29 end
30
31 J_aug (1:end -1,end) = dR_dL;
32
33 %calculate dn_dL
34 dn_dL = -2 * (lambda1 - lambda0);
35 J_aug(end ,end) = dn_dL;
36
37 %calculate dn_du
38 dn_du = zeros(1,n^2);
39 for ii = 1: length(dn_du)
40 dn_du(ii) = -2 * (u1(ii) - u0(ii));
41 end
42
43 J_aug(end ,1:end -1) = dn_du;
44
45 %calculate dn_ds
46 dn_ds = 2 * ds;
47
48 dR_ds = zeros(n^2,1);
49 dRhat_ds = [dR_ds;dn_ds];
50
51 %we can now solve Ax = b
52 vals = J_aug\-dRhat_ds;
53 du_ds = vals (1:end -1);
54 dL_ds = vals(end);
55
56 du = du_ds *ds;
57 dL = dL_ds *ds;
58 disp(dL)
59 %calculate new lambda and new u values
60 u2 = u1 + du;
61 lambda2 = lambda1 + dL;
62
63 end

5.7 Newton’s Method Function

1 % This function performs newtons method
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2 function u = NewtonsMeth(n,u,lambda)
3
4 [J,R] = BVP_2DSol(n,u,lambda);
5
6 %solve the linear equation J*delta = -R
7 delta = J\-R;
8
9 d1 = delta .^2;

10 d2 = sum(d1(:));
11 check = sqrt(d2);
12
13 %assign a tolerance value
14 conv = 10^-5;
15
16 while check > conv
17 %add the difference to the new initial guess
18 u = u + delta;
19 [J,R] = BVP_2DSol(n,u,lambda);
20
21 %solve the linear equation J*delta = -R
22 delta = J\-R;
23 d11 = delta .^2;
24 d22 = sum(d11(:));
25 check = sqrt(d22);
26 end
27
28 end

5.8 Newton’s Augmented Method Function

1 % This function performs newtons method
2 function [u,lambda] = NewtonsMethAug(u2Guess ,u1 ,lambda2 ,lambda1 ,n,ds)
3
4 %creates the regular jacobian matrix and residial vector
5 [J,R] = BVP_2DSol(n,u2Guess ,lambda2);
6
7 % ext we will create the augmented J matrix , J_aug
8 % Preallocate a n^2+1 by n^2+1 matrix
9 J_aug = zeros (1+n^2,1+n^2);

10
11 %next we create the augmented forms of J and R
12 J_aug (1:n^2,1:n^2) = J;
13
14 %create dR_dL
15 %First we have to find dR_dL
16 dR_dL = zeros(n^2,1);
17
18 %Populate the matrix
19 for ii = 1:n %loop through ith row
20 for jj = 1:n %loop through the columns of ith row
21
22 %define the indexing
23 l = (jj -1)*n + ii;
24
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25 if (ii == 1 || jj == 1 || ii == n || jj == n)
26 dR_dL(l) = 0;
27 else
28 dR_dL(l) = (u2Guess(l))^2 + u2Guess(l);
29 end
30
31 end
32 end
33
34 J_aug (1:end -1,end) = dR_dL;
35
36 %calculate dn_du
37 dn_du = zeros(1,n^2);
38 for ii = 1: length(dn_du)
39 dn_du(ii) = -2 * (u2Guess(ii) - u1(ii));
40 end
41 J_aug(end ,1:n^2) = dn_du;
42
43 %calculate dn_dL
44 dn_dL = -2 * (lambda2 - lambda1);
45 J_aug(end ,end) = dn_dL;
46
47 % create the augmented R vector
48 diff_u = sqrt(sum(( u2Guess - u1).^2));
49 diff_lambda = lambda2 - lambda1;
50 nu = ds^2 - diff_u ^2 - diff_lambda ^2;
51 R_hat = [R;nu];
52
53 %solve the linear equation J*delta = -R
54 delta = J_aug\-R_hat;
55 du = delta (1:end -1);
56 dlambda = delta(end);
57
58 d1 = delta .^2;
59 d2 = sum(d1(:));
60 check = sqrt(d2);
61
62 %assign a tolerance value
63 conv = 10^-4;
64
65 u = u2Guess;
66 lambda = lambda2;
67
68 while check > conv
69 %add the difference to the new initial guess
70 u = u + du;
71 lambda = lambda + dlambda;
72
73 [J,R] = BVP_2DSol(n,u,lambda);
74
75 %next we create the augmented forms of J and R
76 J_aug (1:n^2,1:n^2) = J;
77
78 %create dR_dL
79 %create dR_dL
80 %First we have to find dR_dL
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81 dR_dL = zeros(n^2,1);
82
83 %Populate the matrix
84 for ii = 1:n %loop through ith row
85 for jj = 1:n %loop through the columns of ith row
86
87 %define the indexing
88 l = (jj -1)*n + ii;
89
90 if (ii == 1 || jj == 1 || ii == n || jj == n)
91 dR_dL(l) = 0;
92 else
93 dR_dL(l) = (u(l))^2 + u(l);
94 end
95
96 end
97 end
98
99 J_aug (1:end -1,end) = dR_dL;

100
101 %calculate dn_du
102 dn_du = zeros(1,n^2);
103 for ii = 1: length(dn_du)
104 dn_du(ii) = -2 * (u(ii) - u1(ii));
105 end
106 J_aug(end ,1:end -1) = dn_du;
107
108 %calculate dn_dL
109 dn_dL = -2 * (lambda - lambda1);
110 J_aug(end ,end) = dn_dL;
111
112 % create the augmented R vector
113 diff_u = sqrt(sum((u - u1).^2));
114 diff_lambda = lambda - lambda1;
115 nu = ds^2 - diff_u ^2 - diff_lambda ^2;
116 R_hat = [R;nu];
117
118
119 %solve the linear equation J*delta = -R
120 delta = J_aug\-R_hat;
121
122 du = delta (1:end -1);
123 dlambda = delta(end);
124 %lambda1 = lambda;
125
126
127 d1 = delta .^2;
128 d2 = sum(d1(:));
129 check = sqrt(d2);
130 %disp(check)
131
132 % [J,~] = BVP_2DSol(n,u,lambda);
133
134 end
135
136 end
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5.9 L2-Norm and Lambda Function

1 %This function solves and loops over a range of given lambda values
2
3 function [u_norms , myLambs] = getNorms(n,u0Guess ,lambda0 ,ds,d_lambda)
4
5 % STEP1: Call newtons method to converge solution at u0 for lambda =
6 % lambda0
7 u0 = NewtonsMeth(n,u0Guess ,lambda0);
8
9 %calculate the l2 norm of the result

10 d1 = u0.^2;
11 d2 = sum(d1(:));
12 n0 = sqrt(d2);
13
14 % STEP2: Use Analytic Continuation to converge at u1 with lambda1 =
15 % lambda0 + dLambda
16 u1Guess = analytic_continuation(u0 ,d_lambda ,n,lambda0);
17
18 % STEP3: Call Newtons Method Again to converge at u1
19 lambda1 = lambda0 + d_lambda;
20 u1 = NewtonsMeth(n,u1Guess ,lambda1);
21
22 %calculate the l2 norm of the result
23 d1 = u1.^2;
24 d2 = sum(d1(:));
25 n1 = sqrt(d2);
26
27 % STEP3: Use Arc Length Continuation to get new solution
28 [u2Guess ,lambda2] = arc_length_continuation(u1 ,u0 ,lambda1 ,lambda0 ,n,ds);
29
30 % STEP4: Call Augmented Newton Function to converge
31 %run augmented newtons function
32 [u2 ,lambda2] = NewtonsMethAug(u2Guess ,u1,lambda2 ,lambda1 ,n,ds);
33
34 %calculate the l2 norm
35 d1 = u2.^2;
36 d2 = sum(d1(:));
37 n2 = sqrt(d2);
38
39 %store everything in a vector for ploting
40 u_norms = [n0 n1 n2];
41 myLambs = [lambda0 lambda1 lambda2 ];
42
43 % loop over lambda range using arclength continuation and newtons augmented
44 % method stating with lamba2
45
46 while lambda2 < 60 && lambda2 > 6
47
48 [u3Guess ,lambda3] = arc_length_continuation(u2 ,u1 ,lambda2 ,lambda1 ,n,ds);
49
50 [u3 ,lambda3] = NewtonsMethAug(u3Guess ,u2,lambda3 ,lambda2 ,n,ds);
51
52 %calculate the l2 norm
53 d1 = u3.^2;
54 d2 = sum(d1(:));



Spring 2023 Luyando Kwenda, Page 19 of 19

55 n3 = sqrt(d2);
56
57 u_norms(end+1) = n3;
58 myLambs(end+1) = lambda3;
59 %disp(lambda3)
60 lambda1 = lambda2;
61 lambda2 = lambda3;
62
63 u1 = u2;
64 u2 = u3;
65
66 end
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