Spring 2023 Luyando Kwenda, Page 1 of 19

Name: Luyando Kwenda
Class: ENM 5020

Due Date: 16 March 2023
Assignment: 2

Application of Newtons Method, Analytical Continuation and Arc
Length Continuation to a 2D Boundary Value Problem

Spring 2023 Luyando Kwenda, Page 2 of 19

Contents

1 Introduction 3
1.1 OVerview o o o e 3

2 Problem Setup and Formulation 3
2.1 Finite Difference Analysis L 3
2.2 Newtons Method e 4
2.3 Initial Guess L 4
2.4 Analytical Continuation L e 6
2.5 Arc Length Continuation e e 6

3 Results 6

4 Conclusion 8

5 Appendix 9
5.1 Main Function L 9
5.2 Imitial Guess Script L e 10
5.3 [Initial Guess Plotting Script L 11
5.4 Jacobian and Residual Function o 12
5.5 Analytic Continuation Function L L 13
5.6 Arc Length Continuation Function 13
5.7 Newton’s Method Function e 14
5.8 Newton’s Augmented Method Function L 15

5.9 L2-Norm and Lambda Function 18

Spring 2023 Luyando Kwenda, Page 3 of 19

1 Introduction

1.1 Overview

In a linear sense we are able to solve for an equation Az = b using methods like LU Decomposition as discussed in
the previous assignment. However, when we are posed with a non-linear equation, we have to use other methods
that focus on iterative schemes. Newtons Method is a Fixed Point Iteration (FPI) method that uses derivatives
to solve for the solution to a curve. Given a curve, we know that the tangent line is a really good approximation
to the curve at that particular point. Even though the root may be far from the actual point of intersection on
the x-axis, we are able to repeat the derivative calculation many times until we get as close as possible to the real
solution which is what we call convergence.

The things to consider when using this iteration method is the domain of convergence and the order of conver-
gence. This convergence can be explained using the Contraction Mapping Theorem which implies that for any
closed and bounded set of functions that map a closed and bounded region R € R™ into itself and in this region
R there is a unique solution to the equation. For the domain of convergence, the Mean Value Theorem states
that for any continuously differentiable function over an interval, there is an intersection of this interval from the
Contraction Mapping theorem that gives the domain of convergence. Its worth noting that we expect newtons
method to converge quadratically.

The first step taken in newtons method is finding an initial guess for the solution which most likely end up
converging and this might be a problem for certain cases. In a general sense Eq. (1) shows how newtons method
works with the k 4+ 1 term being the next guess.

2FH = 2k 4 R(2Y) (1)

There many different subcategories of Newtons Method and in our case, we will focus on the Adaptive Newton
Method. This method involves computing Simple Newton for a while and periodically updating the derivative
matrix called the Jacobian.

In this assignment we are to use newtons method to solve the non-linear 2D BVP for different A values Eq. (2)
using Analytic and Arc Length Continuation. We will also discuss the timing analysis of the methods used

V2u+ Au(l+u) =0 (2)

2 Problem Setup and Formulation

2.1 Finite Difference Analysis

We have been tasked to analyse a 2D Boundary Value Problem (BVP) in the domain D = (0 <2 <1)U(0 <y <1)
provided by Eq. (2) and the first step is to discretize the problem using a center difference which can be written as
u 0%*u
@+87y2+/\u<1+u)=0 (3)
with u = 0 on all boundaries. The equation is not linear in the sense that we have a quadratic term u and we have
to vary the value of lambda over a range of 0 < A < 60. Our problem will be defined by a 30 by 30 grid which
gives a total of 900 by 900 points since this is a two dimensional problem. When discretized, we have

Uipl — 2U + Ui Uppn — 2Ug +Upp
2 2
n2 02

+ Aui(1+u;) =0 (4)

where n = 30, h, = ﬁ = hy = h so we can say h = %. As for the index value 1, we can define it by Eq. (5) with
i being the ith row and j the jth column
I=G-1Dn+1)+1 (5)

This form allows to write out a linear equation in the form Az = b which can be solved using linear methods. This
however, does not provide a direect solution to the problem we use approximations as the initial inputs to the wu;
values. The next step would be to use Newtons method that requires an inital guess. We also know that the actual
equation created from discretization is J§ = —R.

Spring 2023 Luyando Kwenda, Page 4 of 19

2.2 Newtons Method

In section 1.1, we gave a general overview of what happens in a newton iteration. Here we will provide a much
more specific work flow of her dimensional cases. We call a function R(x) the residual function and when expanded
using a taylor series approximation, we can say

OR
R(x) = R(xo) + 5| (x—0) + HOT =0 (6)
xo
k+1 k OR k+1 k
R = R@M) + 50| (@M — o) + HO.T =0 (7)
xk

Rearranging equation 9 we can rewrite this equation as

OR

S| (@ =) = R ®

xk

This is how we obtained the equation stated in the previous section with the residual function given as R(x)

and J is the jacobian matrix.
Joz* = —R(a*) (9)

After deriving these matrices, our next goal will be to create an initial guess and start with an initial lambda value.
The delta values we obtain are then added to the previous ones to get a newer values which are then used in the
newer iteration until convergences occurs.

2.3 Initial Guess

In order to run the newton algorithm, we need to guess an initial input for u;. The simplest way of obtaining this
is buy linearising Eq. (2)
V2u 4 Au =0 (10)

This equation, from it structure, can be termed as an eigenvalue problem. We need to solve for the non-trivial
solution to have relevant results. Eigenvalue problems have a known solution and in this case we have an equation
that is a solution where x and y are locations in the grid. Here A is unknown and we guess a value of 0.1 as lambda
comes from the left and m and n are positive integers

u(x,y) = Apmsin(nra)sin(nry) (11)

A =712(m? + n?) (12)

In this problem we have been given a range of lambda values 0 < A < 60 so our values of m and n are restricted
i.e.

1. For m =1 and n = 1 we have A = 272 = 19.739
2. For m =1 and n = 2 we have \ = 572 = 49.348.
3. For m = 2 and n = 1 we have \ = 5m2 = 49.348

Even though the last two lambda values are identical, their solution branch is different and will be seen in the
final results. After this initial guess is obtained, it is passed to the newton function to obtain values that converge
given a tolerance. It will be seen from the figure below that for our first case, there is only one peak (could also be
a valley depending on A but in the other two cases, there will be one peak and one valley and the only difference
will be their orientation. The contour plots shown below plot initial guess and the converged case and as expected,
the results are almost identical. The values of lambda chose that are close to the actual values are 19.5 and 49.0
for the other two cases.

Spring 2023

Luyando Kwenda, Page 5 of 19

Y Nodes

Y Nodes

Y Nodes

30

25

20

Initial Guess for A = 19.7392

10 15 20 25 30

X Nodes

(a) Initial Guess

Figure 1:

Initial Guess for)\ = 49.348

10 15 20 25 30

X Nodes

(a) Initial Guess

Figure 2:

Initial Guess for \ = 49.348

10 15 20 25 30

X Nodes
(a) Initial Guess

Figure 3:

0.09

0.08

0.07

0.06

0.05

0.03

0.02

0.01

Y Nodes

30

25

20

Converged Guess for)\ =19.7392

5 10 15 20 25 30

X Nodes

(b) Converged Guess

Contour Plots for m=1and n=1

-0.02

-0.04

-0.06

-0.08

Y Nodes

30

Converged Guess for)\ = 49.348

5 10 15 20 25 30
X Nodes

(b) Converged Guess

Contour Plots for m=2and n=1

-0.02

-0.04

-0.06

-0.08

Y Nodes

30

25

n
o

-
W

Converged Guess for \ = 49.348

—

S

5 10 15 20 25 30
X Nodes

(b) Converged Guess

Contour Plots for m =1 and n =2

%10
15

0.08
0.06
0.04

0.02

-0.02
-0.04
-0.06
-0.08

0.1

0.08
0.06
0.04

0.02

-0.02
-0.04
-0.06
-0.08

-0.1

Spring 2023 Luyando Kwenda, Page 6 of 19

2.4 Analytical Continuation

Previously, we were able to solve for a particular value of lambda after getting a solution that converged with
Newton’s Algorithm. Now, we want to increase lambda which gives us another u vector.

ou
Unew = Uold + 77

5| oA (13)

Aold

In order to get %, we can use the residual and jacobian matrices to solve linearly as shown below. The R derivative

is simply taken with respect to A

du
A

_ OR

J —_ -
)\(Old) a>\

(14)

Aold

Since we choose a value of OX and we obtained a result from Eq. (14), are then able to solve Eq. (13) to get newer
values.

2.5 Arc Length Continuation

In some cases, Analytic Continuation fails when we encounter bifurcation points where the slope is zero. In order
to correct this, we use arc length continuation which is more like solving for a straightened curve or tracing out
the curve. The first stage is creating an augmented jacobian matrix that is padded with specific vectors and also
creating an augmented residual matrix that is differentiated with respect to a new variable, s. The full process is
describe in the assignment document so only the main equations will be stated in this report.

. /oR
i=(%) (16)
s

Eq. (15) and Eq. (16) can then be solved linearly as shown

. [Ou N
J (gg> =R (17)

s

Its worth noting that the step size of s ,ds, is a chose variable and in this case we chose 0.1 and is constant in
all our iterations. The results are then run through a new newton loop that takes into account this augmentation.
In order to calculate for convergence, we used the 12-nor which was discussed in the previous assignment. After

every loop, we multiply the result by ds and add the knew delta values to the previous ones to provide a new step.
Further information can be see in the code section of the appendix

3 Results

After a series of trial and error to see which initial lambda guesses would produce a continuous curve, A = 19.1,
A =49.6 and A = 49.6 were the values chosen. The table below summarizes the lambda values.

m =1 n=1 m=1n=2 m=2 n=1
Aguess = 19.1 Aguess = 49.6 Aguess = 49.6
Aactual = 19.7392 Aactual = 49.348 Aactual = 49.348

In the first branch, since the guessed value is less that the actual known value of lambda, we are able to perform
arc length continuation to the right of the curve produced which will give positive norm values. When we move to
the left, the norm values are expected to be negative as seen from the norm plot below. In the other two cases, we
chose an initial lambda guess that was on the right so we would expect the norm values to be negative as we move
towards the actual guess.

At first glance, it may seem like the our last two branches would produce the same result but we are able to
differentiate them using contour plots. In the 12-norm plot below, their norm values lie over each other. Despite
changing the A value in the initial guess, this will always be the result.

Spring 2023 Luyando Kwenda, Page 7 of 19

Norms vs Lambda

lull,

10 15 20 26 30 35 40 45 50 55 60

A
Figure 4: 12 Norm versus Lambda

In the figure below, we show contour plots for three different branches at chosen lambda values i.e. A = 30.1085
and A = 60.0104. In to demonstrate why we obtained the same norm for the last two branches, we use the same
lambda value but the only difference we will observe is the orientation of the valleys and peaks. As mention before,
figure 5a shows a hill because value of lambda is greater that 2w2. For the last two branches, when compared
to figures 2b and 3b, the plots show that they have greater peaks than valleys. If more plots are shown for an
increasing lambda value closer to the known eigenvalue, we will notice the trend from the hills and valley being
symmetric in the graph to what is seen below.

In figures 5a and 6a we note that the difference is that as we choose a lambda value less than 27, we obtain a
valley whereas if greater than, we have a mountain

Solution Branch for A = 30.1085 x107 Solution Branch for A = 60.0104 x10%® Solution Branch for A = 60.0104 x10®

T

N

5 10 15 20 26)
X Nodes

(a) Branch1 m=1and n=1 (b) Branch 2 m=2and n=1 (¢) Branch 2 m=1and n=2
Figure 5: Contour Plots for the 3 different branches

Solution Branch for A = 12.4146 Solution Branch for A = 51.2324 %108

Solution Branch for A = 51.2324 =102
= 75 15
/ 1
/ \ -+
05
I &
| 0
&
10
1
5 10 15 20 25 0 x10 5 10 15 20 25 0 5 10 15 20 25 a0

X Nodes X Nodes X Nodes

&

(a) Branch 1 m=1and n=1 (b) Branch 2 m=2and n=1 (c) Branch 2 m=1 and n =2
Figure 6: Contour Plots for the 3 different branches

Spring 2023 Luyando Kwenda, Page 8 of 19

4 Conclusion

In summary, we had been given a non-linear 2D Boundary Value Problem that we could not solve using linear
methods. We implemented an iterative scheme using Newtons method to solve for convergence. The first step we
took was finding an initial guess for the solution given a lambda range. When the equation is linearized, we are
able to obtain a solution that has eigenvalues,Jambda. From this, we are only able to obtain 3 lambda values that
fall within the range with two of them being equal.

The initial guesses are passed through newton’s loop for convergence and then analytic continuation which gives
the next point. But because we are likely to get a point where the derivative is zero, the linear equations solved
using the residual and the jacobian are unsolvable. Hence we rely on arc length continuation which helps us when
we encounter these bifurcation points. From this point onward, we used an augmented newtons loop to solve for
different lambda values to obtain new solutions.

From the 3 branches we obtained, we noted that in the last two branches where m =2, n=1, m=1,n =2 we
observed that increasing the lambda values from the known eigenvalue produced a greater peak intensity. The only
notable difference is the orientation rotation of 90 degrees. The first branch with equal m and n values produced
either a peak of a value depending on what lambda value is chosen.

Spring 2023 Luyando Kwenda, Page 9 of 19

5 Appendix

Below is the code used in the analysis of the problem

5.1 Main Function

% Thisis the main script that runs all the code and generates the norm vs
% lambda plots

close all;clear;clc
n = 30;

%call function that solves for all the initial guesses. Here we have thress
%cases so we have to loop through all the cases (3)
u_mat = initial_guess(n);

lambdal = 19.1;

ul = u_mat(:,1);

%for the forward direction

ds = 0.1;

dLambda = 0.1;

[u_normsf1l, myLambsfil] = getNorms(n,ul,lambdal,ds,dLambda);
ds = -0.1;

dLambda = -0.1;

%for the backward direction

[u_normsbl, myLambsbil] = getNorms(n,ul,lambdal,ds,dLambda);

%Change the vectors by concatination and plot
myLambsl = [fliplr (myLambsbl) myLambsfl];

u_normsl = [fliplr(u_normsbl) u_normsfl];
minInd = find(u_normsl==min(u_normsil));

next = minInd+1;

u_normsl (next:end) = -u_normsl(next:end);
plot (myLambsl ,u_normsl, 'k-"','LineWidth',1.5)
hold on

lambda2 = 49.6;

u2 = u_mat(:,2);

%for the forward direction

ds = 0.1;

dLambda = -0.1;

[u_normsf2, myLambsf2] = getNorms(n,u2,lambda2,ds,dLambda);
%for the backward direction

ds = -0.1;

dLambda = -0.1;

[u_normsb2, myLambsb2] = getNorms(n,u2,lambda2,ds,dLambda) ;

myLambs2 = [fliplr (myLambsb2) myLambsf2];

u_norms2 = [fliplr(u_normsb2) u_normsf2];

minInd = find(u_norms2==min(u_norms2)); %twice equal values
next = minInd (1) +1;

u_norms2 (next:end) = -u_norms2(next:end);

plot (myLambs2 ,u_norms2, 'm-','LineWidth',1.5)

Spring 2023 Luyando Kwenda, Page 10 of 19

hold on

lambda3 = 49.6;

u3 = u_mat (:,3);

%for the forward direction

ds = 0.1;

dLambda = -0.1;

[u_normsf3, myLambsf3] = getNorms(n,u3,lambda3,ds,dLambda) ;
%for the backward direction

ds = -0.1;

dLambda = -0.1;

[u_normsb3, myLambsb3] = getNorms(n,u3,lambda3,ds,dLambda) ;

myLambs3 = [fliplr (myLambsb3) myLambsf3];
u_norms3 [fliplr (u_normsb3) u_normsf3];

minInd = find(u_norms3==min(u_norms3)); J%twice equal values
next = minInd (1) +1;

u_norms3 (next:end) = -u_norms3(next:end);

plot (myLambs3 ,u_norms3,'g--','LineWidth',1.5)

xlabel ('")

legend ('\lambda = 19.1','\lambda = 49.6','\lambda = 49.6"')

title('Norms vs Lambda', 'fontweight', 'bold','fontsize',16);
xlabel ('\lambda', 'fontweight', 'bold', ' 'fontsize',16);

ylabel ('||ull_{2}', ' fontweight','bold','fontsize',16)
exportgraphics (gcf, 'normplot. jpg')

5.2 Initial Guess Script

%This script generates the inital guesses for the lambda values
%given our range of values, we have three possible solutions to get a
%lambda value less than 60 exculding =zero

function u_mat = initial_guess(N)
%we have u = Asin(nx*pi*x)sin(m*pix*y)
m_vec = [1 1 2];

n_vec = [1 2 1];

hcreate vector to store possible lamda values
lambda_vec = zeros(1l,length(m_vec));

hpreallocate initial values vector
A = 0.1;

u0 = zeros(N~2,1);

u_mat =zeros(N~2,3);

for ii = 1:length(m_vec)
m = m_vec (ii);

Spring 2023 Luyando Kwenda, Page 11 of 19

n = n_vec(ii);
lambda = pi~2 *(m~2 + n~2); %calculate current value of lambda

%store lambda values in vector
lambda_vec(ii) = lambda;

for jj = 1:N

for kk 1:N
1 = (kk-1)*N + jj;
x = (jj-»/M-1);

y = (kk-1)/(N-1);

u0(l) = A * sin(n*pixx) * sin(m*pix*y);
end
end
u_mat(:,ii) = uo0;
uo = [];
end
end

5.3 Initial Guess Plotting Script

%This script plots the initial and converged u values
close all

ind =3;

n = 30;

[u_mat ,lambda_vec] = initial_guess(n);
guess = u_mat (:,ind);

guess = (reshape(guess,[n,n]));

lambda = lambda_vec(ind);

figure

contourf (guess ,n)

colorbar

colormap ("turbo")

xlabel ('\bf X Nodes')

ylabel ('\bf Y Nodes')

title(['Initial Guess for \lambda = ', num2str (lambda)])
exportgraphics (gcf,"guess min2 .jpg")

% Use Newton function to calculate the new J and R values
lambdal = 49.6;

[J,R,u00,counter] = NewtonsMeth(n,u_mat(:,ind),lambdal);
ul = (reshape(u00,[n,n]));

figure
contourf (ul,n)

Spring 2023 Luyando Kwenda, Page 12 of 19

colorbar

colormap ("turbo")
xlabel ('\bf X Nodes')
ylabel ('\bf Y Nodes')

title(['Converged Guess for \lambda = ', num2str(lambda)l)
% name = num2str (n);
%» name = convertCharsToStrings (name) ;

exportgraphics (gcf ,"Converged min2 .jpg")

5.4 Jacobian and Residual Function

%This function creates the Jacobian and R matrices
%INPUT: n is the grid dimension

yA u is the initial guess and lambda

function [J,R] = BVP_2DSol(n,u,lambda)

%Equal in the x and y spaces

nx = n-1;
ny = nx;
hx = 1/nx;
hy = 1/ny;

%Preallocate J and R matrix (Ax = b)
J = zeros(n~2,n"2);
R = zeros(n~2,1);

%Populate the matrix
for ii = 1:n %loop through ith row
for jj = 1:n Y%loop through the columns of ith row

%define the indexing
1 = (jj-1)*n + ii;

if (ii == 1 || jj == 1 || ii == n || jj == n)

%filling the matrix by first choosing a column and going up
hthrough the rows

%in the x direction

J(1,1) = - 4/(hx~2) + lambdax*x(1+2*%xu(l));

J(1,1+1) = 1/(hx"2);
J(1,1-1) 1/(hx"~2);

%in the y direction
J(1,1-n) = 1/(hy~2);
J(1,1+n) = 1/(hy~2);

R(1)= ((u(l+1) - 2*u(l) + u(l-1))/(hx~2)) + ((u(l+n) - 2*xu(l) + u(l
— -n))/(hy~2)) + (lambda * u(l) *(1 + u(l)));

end

end

Spring 2023 Luyando Kwenda, Page 13 of 19

end

end

5.5 Analytic Continuation Function

function u = analytic_continuation(uo,d_lambda,n,lambda)
[J,”] = BVP_2DSol(n,u0,lambda) ;

%First we have to find dR_dL
dR_d4dL = zeros(n~2,1);

%Populate the matrix
for ii = 1:n Yloop through ith row
for jj = 1:n Y%loop through the columns of ith row

%define the indexing
1 = (jj-1)*n + ii;

if (ii == 1 || jj == 1 || ii == n || jj == n)
dR_d4dL (1) = 0;
else
dR_dL (1) = (u0(1l))~2 + u0(l);
end

end
end

%next we solve the linear equation
du_dL = J\-dR_d4dL;

%GET NEW U VALUE
u = u0 + du_dL * d_lambda;

end

5.6 Arc Length Continuation Function

% This function performs arc length continuation

function [u2,lambda2] = arc_length_continuation(ul,u0,lambdal, lambdal,n,ds)
[J,”] = BVP_2DSol(n,ul,lambdal);

% Preallocate a n~2+1 by n~2+1 matrix

J_aug = zeros(1+n~2,1+n"2);

%Fill the matrix accordingly
J_aug(1:n~2,1:n"2) = J;

%First we have to find dR_dL
dR_dL = zeros(n~2,1);

Spring 2023 Luyando Kwenda, Page 14 of 19

%“Populate the matrix
for ii = 1:n Y%loop through ith row
for jj = 1:n Y%loop through the columns of ith row

%define the indexing
1 = (jj-1)*n + ii;

if (ii == 1 || jj == 1 ||l ii == n || jj == n)
dR_dL (1) = 0;
else
dR_AL(1) = (ul(1))~2 + ul(1l);
end

end
end

J_aug(l:end-1,end) = dR_d4L;
%calculate dn_dL

dn_dL = -2 * (lambdal - lambdaO) ;
J_aug(end,end) = dn_dL;

%calculate dn_du

dn_du = zeros(1,n"2);
for ii = 1:length(dn_du)

dn_du(ii) = -2 * (ul(ii) - u0(ii));
end

J_aug(end,l:end-1) = dn_du;

%calculate dn_ds
dn_ds = 2 * ds;

dR_ds = zeros(n~2,1);
dRhat_ds = [dR_ds;dn_ds];

%we can now solve Ax = Db
vals = J_aug\-dRhat_ds;
du_ds vals(1:end-1);
dL_ds vals (end) ;

du = du_ds *ds;
dL = dL_ds x*ds;

disp (dL)
%calculate new lambda and new u values
u2 = ul + du;

lambda2 = lambdal + dL;

end

5.7 Newton’s Method Function

% This function performs newtons method

Spring 2023 Luyando Kwenda, Page 15 of 19

function u = NewtonsMeth(n,u,lambda)
[J,R] = BVP_2DSol(n,u,lambda);

%solve the linear equation J*delta = -R
delta = J\-R;

d1 delta."~2;
d2 sum(d1(:));
check = sqrt(d2);

%assign a tolerance value
conv = 10~ -5;

while check > conv
%add the difference to the new initial guess
u = u + delta;
[J,R] = BVP_2DSol(n,u,lambda);

%solve the linear equation J*delta = -R
delta = J\-R;

dll = delta."2;

d22 sum(d11(:));

check = sqrt(d22);

end

end

5.8 Newton’s Augmented Method Function

% This function performs newtons method
function [u,lambda] = NewtonsMethAug(u2Guess,ul,lambda2,lambdal,n,ds)

hcreates the regular jacobian matrix and residial vector
[J,R] = BVP_2DSol(n,u2Guess,lambda2);

% ext we will create the augmented J matrix, J_aug
% Preallocate a n~2+1 by n~2+1 matrix
J_aug = zeros(1+n~2,1+n"2);

%next we create the augmented forms of J and R
J_aug(l:n~2,1:n"2) = J;

%create dR_dL
%First we have to find dR_dL
dR_dL = zeros(n~2,1);

%Populate the matrix
for ii = 1:n %loop through ith row
for jj = 1:n %loop through the columns of ith row

%define the indexing
1 = (jj-1)*n + ii;

Spring 2023

Luyando Kwenda, Page 16 of 19

if (ii == 1 || jj == 1 ||l ii == n || jj == n)
dR_d4dL (1) = O0;
else
dR_dAL (1) = (u2Guess(l))~2 + u2Guess(1l);
end

end
end

J_aug(l:end-1,end) = dR_dL;

Y%calculate dn_du

dn_du = zeros(1,n"2);
for ii = 1:length(dn_du)

dn_du(ii) = -2 * (u2Guess(ii) - ul(ii));
end

J_aug(end,1:n"2) = dn_du;

%calculate dn_dL
dn_dL = -2 * (lambda2 - lambdal);
J_aug(end,end) = dn_dL;

% create the augmented R vector

diff_u = sqrt(sum((u2Guess - ul)."2));
diff_lambda = lambda2 - lambdal;

nu = ds~2 - diff_u~2 - diff_lambda~2;
R_hat = [R;nul;

%solve the linear equation J*delta = -R
delta = J_aug\-R_hat;

du = delta(l:end-1);

dlambda = delta(end);

d1 delta."~2;
42 sum(d1(:));
check = sqrt(d2);

%assign a tolerance value
conv = 10~ -4;

u = u2Guess;
lambda = lambda?2;

while check > conv
%add the difference to the new initial guess
u = u + du;
lambda = lambda + dlambda;

[J,R] = BVP_2DSol(n,u,lambda);

%next we create the augmented forms of J and R
J_aug(1:n~2,1:n"2) = J;

%create dR_dL
create dR_dL
%First we have to find dR_dL

Spring 2023 Luyando Kwenda, Page 17 of 19

%

end

end

dR_dL = zeros(n~2,1);

%Populate the matrix
for ii = 1:n %loop through ith row
for jj = 1:n Y%loop through the columns of ith row

%define the indexing
1 = (jj-1)*n + ii;

if (ii == 1 || jj == 1 || ii == n || jj == n)
dR_d4AL (1) = O0;

else
dR_AL(1) = (u(1))~2 + u(l);

end

end
end

J_aug(l:end-1,end) = dR_dL;

%calculate dn_du

dn_du = zeros(1,n"2);
for ii = 1:length(dn_du)

dn_du(ii) = -2 * (u(ii) - u1l(ii));
end

J_aug(end,l:end-1) = dn_du;

%calculate dn_dL
dn_dL = -2 * (lambda - lambdail);
J_aug(end,end) = dn_dL;

% create the augmented R vector
diff_u = sqrt(sum((u - ul)."2));
diff_lambda = lambda - lambdal;

nu = ds~2 - diff_u~2 - diff_lambda~2;
R_hat = [R;nul;

%solve the linear equation J*delta = -R
delta = J_aug\-R_hat;

du = delta(l:end-1);
dlambda = delta(end);
%lambdal = lambda;

d1l delta."2;

d2 sum(d1(:));
check = sqrt(d2);
%disp (check)

Il

[J,”] = BVP_2DSol(n,u,lambda);

Spring 2023 Luyando Kwenda, Page 18 of 19

5.9 L2-Norm and Lambda Function

%This function solves and loops over a range of given lambda values
function [u_norms, myLambs] = getNorms(n,uOGuess,lambdaO,ds,d_lambda)
% STEP1: Call newtons method to converge solution at u0 for lambda =
% lambdaO

u0 = NewtonsMeth(n,uOGuess,lambda0);

%calculate the 12 norm of the result

dl = u0."2;
d2 = sum(d1(:));
n0 = sqrt (d2);

% STEP2: Use Analytic Continuation to converge at ul with lambdal =
% lambdaO + dLambda
ulGuess = analytic_continuation(u0,d_lambda,n,lambda0) ;

% STEP3: Call Newtons Method Again to converge at ul
lambdal = lambdaO + d_lambda;
ul = NewtonsMeth(n,ulGuess,lambdal);

%calculate the 12 norm of the result

dl = ul."2;
d2 = sum(d1(:));
nl = sqrt(d2);

% STEP3: Use Arc Length Continuation to get new solution
[u2Guess ,lambda2] = arc_length_continuation(ul,u0,lambdal,lambda0l,n,ds);

% STEP4: Call Augmented Newton Function to converge
%run augmented newtons function

[u2,lambda2] = NewtonsMethAug (u2Guess ,ul,lambda2,lambdal,n,ds);

%calculate the 12 norm

dl = u2.°2;
d2 = sum(d1(:));
n2 = sqrt(d2);

%store everything in a vector for ploting
u_norms = [n0 nl n2];
myLambs = [lambdaO lambdal lambda2];

% loop over lambda range using arclength continuation and newtons augmented
% method stating with lamba?2

while lambda2 < 60 && lambda2 > 6

[u3Guess ,lambda3] = arc_length_continuation(u2,ul,lambda2,lambdal,n,ds);
[u3,lambda3] = NewtonsMethAug(u3Guess,u2,lambda3,lambda2,n,ds);
%hcalculate the 12 norm

dl = u3."2;
d2 = sum(d1(:));

Spring 2023 Luyando Kwenda, Page 19 of 19

n3 = sqrt(d2);

u_norms (end+1) = n3;
myLambs (end+1) lambda3;
%disp(lambda3)

lambdal = lambda2;

lambda2 = lambda3;
ul = u2;
u2 = u3;

end

	Introduction
	Overview

	Problem Setup and Formulation
	Finite Difference Analysis
	Newtons Method
	Initial Guess
	Analytical Continuation
	Arc Length Continuation

	Results
	Conclusion
	Appendix
	 Main Function
	Initial Guess Script
	Initial Guess Plotting Script
	Jacobian and Residual Function
	Analytic Continuation Function
	Arc Length Continuation Function
	Newton's Method Function
	Newton's Augmented Method Function
	L2-Norm and Lambda Function

