ENM 5220: Numerical Methods for PDEs

Assignment 1: Numerical Differentiation and Intergration

Luyando Kwenda

Spring 2024 Page 1 of 32

1 Problem 1

No submission

2 Problem 2

Numerically evaluate the derivative of the following function:
f(x) = sin(2z) - cos(20z) + ¥z e [0,27], (1)

using:
i) first-order forward finite difference scheme,

ij fz-‘rlh f]

ii) second-order central finite difference scheme,

Jir1 = fisa

fij = 5%

iii) fourth-order central finite difference scheme, and

fi—a —8fi—1 + 8fit1 — fite
12h

fiy =

iv) fourth-order Padé scheme.

3 nt
Fior + fioy +4F = S (fi1 — fim1) + o= [
h 30
For the boundaries:) .)
! of — —(_2 9 -
fo+2f1 h(2f0+ f1+2f2>
1 1
A | L)

Consider N = 256,512,1024 and 2048, where N is the number of intervals to discretize the 2 domain.
For the periodic case we have the following boundary conditions:

N+ fi+4f = %(fl - fn-1)

v+ fl+4fy = %(fl - fn-1)

The matrix for the third order one sided boundary conditions will be

1 20 0 0
1 4 1 0 0
0 1 4 00
A=

0 0 0 41
0 0 0 2 1
F(=3fo+2h+50)

g(fZ_fl)

- g(f3_f2)

%(fN—.fol)
L (B f—2fn1 — 2 fus))

Spring 2024 Page 2 of 32

The matrix for the periodic boundary conditions will be

4 1 1 O
1 4 1 0 0
0 1 0 0
A=, R
00 0 - 41
01 0 - 1 4
[(fi—fn)]
(fo— f1)
b—3 (fz = f2)
== f
(fnv — fn—2)
(fo—f2)

The Thomas Algorithm uses LU decomposition to solve tridiagonal matrices, however, for the case with the periodic
boundary conditions, we have two off diagonal terms which means we cannot use it to solve this problem.

Comparison of Finite Difference Schemes

107
S
L0
2 107
—p— (2
—f—CD4
- : - o —— Paded-1 :
100 7 . : : R Pade4-2 5
— —+— - 1st order]
— —%r— - 2nd order
— £1— - 3rd order
" — = — -4th order
107 gZi - - i - [E
107 107

Spring 2024 Page 3 of 32

3 Problem 2.1

a.

To determine whether the given finite difference expression holds, let’s apply the central finite difference operator
to the expression u,v,:

5(unvn) o Un+1Un+1 — Up—1Un—1

ox 2h
Expanding this expression (LHS):
5(unvn) o un+1vn+1 _ Up—1Un—1

ox 2h 2h

Now, let’s express this in terms of finite differences (RHS):

6(Unvn) un+1 — Up—1 UnJrl — Un—1
T S T A

Comparing this with the analogous finite difference expression:

S(uv) (57114_ du
5z Vox ' Vex

we can see that the given finite difference expression does not directly match the analogous finite difference expres-
sion from calculus. Therefore, the given finite difference expression does not hold as stated.

b.
Let’s evaluate the right-hand side:

_ Ouy, Oy,

Un e T

Given:

_ 1 _ 1
Up = i(un+1 + unfl)a Up = §(Un+1 + ’Unfl)

Now, let’s evaluate each term:

_ ov 1 Un+1 — Un—1
UHT; = §(Un+1 + unil)”JrT”
1
= E(“nﬂvnﬂ — Un1Vn—1 + Up—1Vn41 — Up—1Un—_1)
Similarly,
T %:1(’0 +o)unJrl_unfl
"o PR n-t 2h
1
= E(Un-‘rlun-‘rl — Un41Un—1 + Un—1Un+1 — Un—lun—l)
Adding both terms together:
d(upv _ v _ ou 1
% = unT; + ’UnT; - ﬁ(un+lvn+1 - unflvnfl)

So, both sides of the equation are equal, thus confirming the validity of the given expression.

Spring 2024 Page 4 of 32

C.
Show that

o 6 — B (qu

i %(@ﬁ) 5z
Starting with the RHS:

Grt1¥nt1 — Pn—1¥n—1 1 dn+1 O0n—1
2h - 5 7/}71,-&-1 6.’17 + wn—l (SLE
(¢n+2 + Qﬁn)wn-i-l - (¢7z + ¢n—2)¢n—1 _ ¢n+1(¢n+1 - ¢n) + ¢n—1(¢n - ¢n—2)
4h 4h

This reduces to a a form of the finite difference which is equal to the LHS.

‘an("/)n—&-l — Q/Jn—l) 571/)
2h ox

=9

d.

To derive a finite difference formula for the second-derivative operator from two applications of the first-derivative
finite difference operator, let’s start by defining the first-derivative finite difference operator as:

5“ U; — Uj— h2 1"
— Tl T
ox 2h 6
where h is the spacing between grid points.
Now, applying this operator twice to u, we get:

(527U -~ i Ui+1 — Ui—1 _ Eu”l
6x2 " bz

2h 6 "
Expanding the derivative on the right-hand side:

u; —u; h2 11 U; —Uj— h2 "
1) Ujp1 — Ui—1\ (Jr22h - ?uivq) - (2h = - ?ui71>
o 2h ~ 2h
Simplifying:
u uipr —2ui+uig ho, o " 1 o (iv)
S22 1h2 - ﬁ(uiJrl) - gh u;
5%u Uitpo — 2U; + Uj—2 h2 iv
2T e gl T

This gives us the finite difference formula for the second-derivative operator using two applications of the first-
derivative finite difference operator.

Spring 2024 Page 5 of 32

Comparison of Second Derivative Formulas

10° e |

10%

Absolute Error

Finite Difference Formula
— — — -Popular Formula

107 i i
107 107 10 107" 10"
Step Size (h)

Looking at the graphs, we can see that they have the same slope (1.9) which means that they have the same order
of accuracy of 2. Because the graphs are slightly shifted from one another, we can also deduce that the given
popular equation leading term error has a magnitude smaller that the one derived (about 4 times smaller: i divided
the points at the intercept to get this value). Looking at my derivation for the leading order error term, I assume
I made an arithmetic error hence the two derivative terms that remain in the error.

4 Problem 2.2

Find the most accurate formula for the first derivative at z; utilizing known values of f at z;_1, z;, ;41 and z; 2.
The points are uniformly spaced. Give the leading error term and state the order of the method
We will begin by first creating the taylor table for this scheme

1 |

aofi-1 a0 —aoh fagh? —Llaoh® aoh?
aifi @ 0 0 0 0
asfiv1 az ash Sash? %th?’ Lash?
azfiva az 2azh 2azh? %a3h3 %aé
fi 0 1 0 0 0

Spring 2024 Page 6 of 32

aofi—1 + avfi + azfiy1 + azfipe = (a0 + a1 + az + as) f; + (—ao + az + 2a3)hf;

1 1 y 1 1 4 1 1 2 -
+ (iao + 5(12 + 2a3)h2fi” + (—60,0 + 6&2 + §a3)h3ff“ + (ﬂao + ﬁag + gag)h‘lf;”

We want the coefficient of the first derivative to be equal to 1 and have the rest equal to zero

ag+ a1 +as+a3=0
ap+0+as +4a3 =0
—ag+0+as+2a3 =1
—ap+0+ax+8az =0

Solving this simultaneously, we get

1

an = ——

Y

_1

BT

a 1

T h

a —_i

T 6h

We plug these values back into our combined equation
1 1 1 1 o1 4
—fic1— = fi+ —fix1 — = fin = hfi — —=h*f
splimt T gpli T R T gyt = s
i —2fic1 = 3fi +6fit1— i
flz _ f 1 f f+1 f+2 +O(h3)

6h?

The leading error term is given by I—th‘g f#* and the order of this method is third order accurate

5 Problem 2.3
Verify that the modified wavenumber for the fourth-order Pade’ scheme for the first derivative is

3sin(kA)

K= oSS
A(2 4 cos(kA)

(1)

The fourth order Pade’ formula for numerical differentiation is given below in the textbook as described by equation
2.16 in the textbook

3 X
fim + i +4f; = Z(fj—i—l + fi—1) + %fj

@) = e
f(x) = ike'*®

’Lkelkwfrl +Zkezkx171 + 42]436“61’7 _ K(ezkx]+1 o ezkm],l)

Spring 2024

Page 7 of 32

We then collect all the ik terms to one side of the equation with h equal to A

ik R @A) etk) | g ke %(eik(ac+A) _ ety

. . . 3 . . .
ikezkw(ezkA + e—zkA + 4) _ 7ezkw(ezkA _ e—zkA)

. A .
cos(x) = %
sin(x) = ¢ _2.6_
(3
ik(2 cos(kA) + 4) = %(2@ sin(kA))
ik — 3(2isin(kA))
~ A(2cos(kA) +4)
L Bsin(kd)
A(2 4 cos(kA))

Modified Wavenumber Comparison

T T T T /.
31 Second Order Central Difference 7
= == :[Fgurth Order Padé Scheme

————- Exact ;

25 | s .
_/
R
I-/"I
2t pta :
."
_.f
o -
<] P T ~

= 15[i N -

#..f?’ LY

S
o
L e :
”
y A
.’
05r .
\
\
D 1 | 1 1 i
0 0.5 1 1.5 P 2.5
kA

6 Problem 2.4

A general Pade’ type boundary scheme (at i=0) for the first derivative which does not alter the tri-diagonal structure

of the matrix in equation 2.16 can be written as

o+ afi = 7 (afo+ bfi + cfs + dfs)

(2)

a. Show that requiring this scheme to be at least third order accurate would constrain the coefficients to

Spring 2024 Page 8 of 32

_ 11 4+ 2« b_6—a _2a—3 d_2—a
T T2 T T G

b. Find all the coefficients such that the scheme would be fourth-order accurate.

We will first create a Taylor table evaluated about fy We can then sum up the coefficients and then set them to

| foJo 0 0" 0’ 5]
&0 1 0 0 0 0
aff 0 ! ah iah? Lah® Loaht
afg a 0 0 0 0 0
bfi b bh %th %biﬁ %1 bh* 1—10 bh®
cfa ¢ 2ch 2ch? §Ch3 §7ch4 é—%ch5
dfs d 3dh %th Sdh? %dh‘l S5dn®

zero so that we can get rid of the lower order terms, giving us higher accuracy.

at+b+c+d=0
b+2c+3d=1+«

1 9
§bh+20h+§dh+ah:0
Lo 4.0 9 0 1 5
th +3ch +2dh +20¢h =0
Rewriting the equations we get

a=—(b+c+d)
b+2c+3d=1+a
b+ 4c+9d =2«

b+ 8c+ 27d = 3«

We can then solve the equations simultaneously

b= —4c—9d + 2«
(—4ec—9d+2a)+2c+3d=14+«
(—4c—9d + 2a) + 8¢+ 27d = 3«

Simplify further to

—2c—6d=1—«
4c+18d = «

Multiply the first equation by 2 and add

—4¢—12d =2 — 2«

dc+18d = —«
This gives
6d=2—-a«
2—-—«a .
d= (d equation)

Spring 2024

Page 9 of 32

We plug this to get the value of ¢

2—«

4e + 18()=—a

dc+6 —3a =«
4c=4a—6
200 — 3

T

We can then solve for b and a

200 — 3 2—«
)) —9(5) + 2

b:2a—4a+673+3ﬁ

2
6—«
2

b= —4(

b=

2 2 6
18 —3a+6a—9+2—«

6
11 + 2«

6

a=—(

a =

(c equation)

(b equation)

(a equation)

In order to make this fourth order accurate, we want the coefficients of the fourth derivative to be equal to zero as

well. This gives us:

1 1 2 27
4o = b+ 16¢ + 81d
6—« 200 — 3 2—«
da = 1 1
a 5 + 16(5)+ 81(G)
a=3

We can then plug this alpha value back into our a,b,c and d equations

—17
a=—
6
3
b==
2
L3
)
1
d=—=
6

7 Problem 2.8

a.

For the left boundary, derive a third-order Pade’ scheme to approximate y{ in the following form:

yi' + bayt = aryr + azyz + asys + asy, + O(h®)

Spring 2024 Page 10 of 32

[v v vi" v’ i
ayr a0 0 0 0 0
asys a9 G,Qh %Qth %agh?’ 2*14(12 h4 ﬁloaghs
asys as 2a3h %aghz %a3h3 £G3h4 %aghs
asyy 0 as e gad(F)? jaa(F) graa(FH)*
v 0 0 1 0 0 0
b2 Y2 0 0 b2 bgh %bg h2 %bg h2

We have 5 unknowns so we need 5 equations to solve this problem

a1+a2+a3:0
a2h+2a3h+a4:0

1 2 4 2 a4h

- = -2 =242

2a2h + 2a3h 5 + 2by

1 8 1

EMM+6%M+§MM=®h
1 16 1 1
—ash* + —azh* — —ayh® = —byh?
9p 2l Tt g st~ gaa 272

These equations can be solved using the solve function in Matlab giving results in terms of h. See Appendix 77

36
alzw
48
927 932
_12
4= 93p2
_94
a4:m
~11
b= o

We then obtain a final equation for the left boundary condition:

g M, 36 48 12 24
Y17 53%2 = 7ot T 935292 T 932 Y3 T 930t
11

2
no_ =N — " 4 _ _ 2h !
Vi~ 53l 23h2[3y1 +4y2 — ys Yp)

b.

For the right boundary, we repeat the same process but instead take positive h/2 for the boundary term. This time
we will evaluate our taylor series about yy

a1+a2+a320
—agh—2a3h+a4 =0

1 4 ash
§a2h2 + §a3h2 =+ % = 2 —+ 2b2
1 8 1
—EWM—E%W+§MW:—@h

1 16 1 1
—aght + —azh® + —ash® = —boh?
912 Tt g s+ ggaa 972

Spring 2024

Page 11 of 32

111

| yN YN YN v N o
a1yn ax 0 0 0 0 0
A2YN —1 as —(ZQh %aghQ —%a2h3 ia2h4 120(12h‘)
A3yN—2 as —2a3h %a3h2 —%a3h3 £G3h4 120a3h°
a1y} 0 a4 ga4 %a4(%)2 %a‘l(%)B 214a4(}2’)4

e 0 0 1 0 0 0
boyn—1 0 0 by -baoh $byh? -Lpyn?
=36
T 93n2
48
ao =
> 23h2
—12
a3 = ——
> 23m2
24
U= o3p2
—11
by = —
> 23
s 1 12
YN — 23yN 1= 23h2[3yn +4yn—1 — yn—2 + 2hy;]

C.

What are the elements of the matrices A and B operating on the interior and boundary nodes?

Y1 Y1
Yy Y2
A =B
yﬁ(,,l YnN-1
Yn Yn
For the interior nodes, we have the following equation:
1 " "o fi+1_2fi+fi—1
12 + f + 2f it1 = 12
The matrices A and B will have the following form
ri =L g........ 0O 0 0 07
EE (| R T 0 0 0 0
2 2 R
0 = L 0 0 0 0

(an)
o
(a=)
o OG\H. L
okl
=

Spring 2024 Page 12 of 32

1
H‘JO
(=2}
\‘»u
[\')OO
‘\
[t
. [V}
o O
o O
o O
o O
]

(e}
e}
(e}
e}
(e}
—_

-2 1

—12 48 —36
L0 0 0 0 0 5& 35 33

d.

Use this relationship to transform the ODE into a system with y;’s as unknowns. Use N = 24 and solve this
system. Do you actually have to invert A? Plot the exact and numerical solutions. Discuss your result. How are
the Neumann boundary conditions enforced into the discretized boundary value problem?

0%y 3

— =x

Ox? +y
We have an equation of the form Ay” = By and we can substitute this into our ODE Ay” + Ay = Ax®. This gives
us Ay + By = Ax3, simplifying this further we get (A + B)y = Az3. To solve this system of equations, we define
a new matrix C = A + B and a vector b representing the right-hand side function 23. Thus, we have the system
Cy = b which can be solved for y. It’s important to note that we don’t necessarily need to invert the matrix C
explicitly. We can use Matlab’s backslash operator can efficiently solve the linear system.

Exact and Numerical Solutions

B—s T T T T T T T T
_v—‘-%

i = —&— Numerical Solution| |
U= Ty — — — -Exact Solution

0.27

@

)
&

o

(%]

=
T

0.23

o

0.22

i

}Zf

0.21

Spring 2024

Page 13 of 32

The matrices A and B are constructed to include the boundary conditions in their entries, ensuring that the correct
boundary conditions are incorporated into the discretized problem.

8 Problem 2.10

a.

Consider the function f(x) =1 — 2® and a grid defined as follows:

j=0,1,2,...,N
§=-1+2j/N

T = % tanh(fj tanh_l [a])7

O<ax<l1

The parameter a can be used to adjust the spacing of the grid points, with larger a placing more points near the
boundaries. For this problem, take a = 0.98 and N = 32.
(a) Compute and plot the derivative of f with the central difference formula (2.20) and the coordinate transformation
method described in Section 2.5 and compare with the exact derivative in —1 < x < 1. How would the results
change with a = 0.97

Using the central difference formula

Derivative of f(z) using Central Difference Formula

=—©— Central Difference
= = -Exact Derivative | |

e

08 06 04 02 0 02 04 06 08 1

-

(a) a =0.9

o Ji+1— fj—1

Tjy1 — fo1

Derivative of f(z) using Central Difference Formula

=—&— Central Difference
= = -Exact Derivative | |

-1 08 -06 -04 02

(b) a =0.98

Figure 1: Non-Uniform Grids using center difference

For the coordinate transform:

where

df d¢df
de %675
df — fit1i—fin
i~ 2A¢
ﬁ B a

de

arctan(a)(1 — (ax)?)

0

T

0.2

04 08 08 1

Spring 2024 Page 14 of 32

Derivative of f(z) using Coordinate Transformation Method
T T : : T T T T

Derivative of f(z) using Coordinate Transformation Method
T T T T T T

8 T T T 8< T
—©— Central Difference —&— Central Difference

6 = == :Exact Derivative | | 6 = = :Exact Derivative | |

4t 4t E

2t 2t 1
2ot S ot]
B =

2t 2k]

4t 4+ 1

-6 F -6 1

8 8 \

-1 08 06 -04 02 0 0.2 0.4 0.6 0.8 1 -1 08 06 -04 -02 0 0.2 0.4 0.6 0.8 1
x z
(a) a =0.9 (b) a =0.98

Figure 2: Non-Uniform Grids using Coordinate Transform

Comparing the two methods, there is no discernible difference in the graphs, even when varying the value of a
from 0.9 to 0.98. Upon calculating the L, error, it becomes apparent that as we decrease the value of a, the error
diminishes. It is noteworthy that the error resulting from the coordinate transformation method is consistently
lower than that from the finite difference method.

b.

Repeat part (a) with the transformation:
j=0,1,2,...,N
§=%
x; = cos(§;)

We repeat the same procedure as above but only % changes to ﬁ The graphs produces look the same however,

the coordinate transform method had a larger error than previously. The method used in a is more accurate hence
the preferred method

5 Derivative of f(z) using Central Difference Formula 8 Derivative of f(z) using Coordinate Transformation Method
g =6 Central Difference g =8 Central Difference
6H = == ExactDerivative | | 6L = == [Exact Derivative | |
4r 1 4r 1
2t 1 2t 1
£ ot 1 Zoor 1
e B
2t 1 2t 1
al 1 4l i
6t i 6t i
]
-8 -8
-1 -05 0 05 1 -1 -05 0 0.5 1
x T
(a) Center Difference (b) Coordinate Transform

Figure 3: Non-Uniform Grids using Center Difference and Coordinate Transform

C.

How many uniformly spaced grid points would be required to achieve the same accuracy as the transformation
method in (a)? The maximum error in the derivative over the domain for the uniform case should be less than or
equal to the maximum error over the domain for the transformed case.

Spring 2024 Page 15 of 32

Using trial and error, I changed the number of panels but increasing their value. At about 75 panels, the error was
0.0508 which was the exact value obtained in a when a = 0.98. Hence I would approximate 76 grid points.

9 Problem 3.2

Show that
N-1 g N-1

Where 6% ;, = the second-order central difference operator. From the LHS

0
vl—u + Boundary — Terms
Ox |

v
oz |,

Vi1 — Vi1
2h

We expand our LHS we get:

Zulc‘?x Qh[1(v2 — o) + u2(vs — v1) + us(va — v2) + oo + uN—2(UN—1 — UN—3) + un—1(UN — UN-1)]

Our summation bounds are ¢ =1 to N — 1 so any term with ¢ = 0 or ¢ = N are our boundary terms.

1

Qh[vouy — v1uz — v2(uz — u1) — v3(ug — uz) + ... —vN_2(UN—1 — UN—3) + UN—1UN—2 + UNUN_1]

All the grouped terms are in the form of the second order central difference, just as we started but in this case the
operator is acting in u rather than v. Thsi gives us;
N-1

oo a
;uzaz sz 4

In comparison to integration by parts;

1
[VUL — V1U2 + UN_1UN—2 + UNUN_1]

A i

N-1 N-1

ov 0 N1
g Uin | == g Vig + uvl;
=1 i =1 i

This equation is of the same form as our given equation with the bounds in the case being a multiple of u and v
evaluated at the end points

10 Problem 3.3

Using the error analysis for the trapezoidal and rectangle rules, show that Simpson’s rule for integration over the
entire interval is fourth-order accurate.
The rectangle and trapezoidal rule are evaluated over an z; and x;4; and are both third order accurate

Tiyl 3 . 5
[e = hifw) + 555) + b 7 w) + (Midpoint Rule)
Li41 h h3 . h5 .
/:ci f(z)dx = §[f(il/z) + f(yiv1)] — T;f (vi) + 4870 Fo(ys) + ... (Trapezoid Rule)

Spring 2024 Page 16 of 32

Simpsons rule is evaluated over x; and z;12 so the number of divisions increases by a factor of 2, allowing us to
plug in 2h in place of h

Tiy2 . .]—Lf " . I—i w .
/ f(ac)dx _ 2h; f(y:) + 3 I (yi) _;#60{ (i) -
@i hlf(yi) + fyir)] — 5 (ws) + 757 (1a)

We want to get rid of the second derivative term to achieve a higher accuracy so we multiply the first equation by
2 and add the two equations dividing 3 since 27 + [is our result.

Tit2 h hd .
/ f(@)dz = g[fz‘ +4fip1 + fire] — @fﬁrl (3)

The local accuracy for this equation in fifth order accuracy so the global accuracy over the whole interval is fourth
order

11 Problem 3.5

Explain why the rectangle and trapezoidal rules can integrate a straight line exactly and the Simpson’s rule can
integrate a cubic exactly.

Both the Trapezoidal Rule and Rectangle Rule exhibit third-order accuracy, as demonstrated in the previous
question. These methods utilize two points for integration, resulting in quadratic approximations when applied
to linear functions. In cases of exact integration, any error term diminishes to zero. Similarly, Simpson’s Rule
integrates over a quadratic curve, yielding a cubic function as a result. This approach provides exact integration
for cubic functions, aligning with the leading order term of the polynomial approximation

12 Problem 3.6

We have been asked to find a way of solving the Fredholm equation where K (z,t) and f(z) are known

b
f(z) = d(z) + / K (e,)(t)dt

As we discussed in class, we can use the Trapezoid Rule to solve this discrete and solve this problem. By comparison,
the bounds a and b are equal to z1 and xn

1= [swie = i@+ 50 +23 5 @

b
fo) =)+ [Klzs(0
a
This gives us a discretized form of the Fredholm equation

N-1

P = o) + 21K (i) () + K iy an)oon) +2 3 K, a)(;)]

Jj=2

If we put this into matrix form, we will get an equation of the form Ax =bie A¢p = f

1+ %K(thl) hE(1,@0) vvvvrvennns hK(xz1,2N-1) %K(ml,xN)
%K(xg,xl) 1+ hK(:C27x2). ---------- hK(xo,xN_1) %K(IQ,IN)
A= : : e : :
%K(xN,l,xl) hK(xN—1,x2)~--~--:1+hK(mN,1,xN,1) %K(xN—l,xN)
i %K(a:N,arl) hEK(xn,@g) - veveeennns hK(xn,xN—1) 1+%K(3:N,1:N)_

Spring 2024 Page 17 of 32

Our f matrix will be of the form

i
fa
f=1:
fy-1
In

To solve the equation below, we need to rearrange it into the form described above where our f(z) = ma?

o(x) = ma® + /0 ! 3(0.5sin(3z) — tz*)(t)dt

Exact and Numerical Solutions L

T T T M T
—i=— MNumerical Solution
— — — - Exact Solution

04 4
06 i
-08 g
0 0.5 1 1.5 2 2.5 3
X

Figure 4: Solution to cos(3z)

13 Problem 3.8

Numerically evaluate this integral using the trapezoidal rule with n panels of uniform length h. Make a log—log
plot of the percent error vs. n and discuss the accuracy of the method. Take n = 8, 16, 32 etc

/1 100 1

= -

0 Vz+001 (z—-0.3)2+0.001

The Trapezoidal Rule is a method used to approximate the value of a definite integral by dividing the interval of
integration into smaller segments and approximating the area under the curve within each segment as shown in

Spring 2024 Page 18 of 32

Eq. (4). We evaluate from j = 2 to j = n which is the total number of panels so the number of grid points will be
n+1

Error vs. Number of Panels

‘—G—Trapezﬂid Rule
10°¢ 1
107} 1
o e o . e
2 E Srrgr = DI R = gy 00
= I
A 107}
-1[}_‘4 -
107

10" 10° 103 10*
Number of panels (n)

Ideally, as n increases (meaning more panels are used to approximate the integral), we expect the error percentage
to decrease, indicating higher accuracy. If the trapezoidal rule accurately approximates the integral, we should see
a decrease in error percentage with increasing n. In the log-log plot, we see a straight line with negative slope
indicating that the error decreases as n increases, suggesting that the method converges towards the true value of
the integral as the number of panels increases. The rate at which the error decreases with increasing n provides
insight into the order of accuracy of the trapezoidal rule. For example, if the error decreases by a factor of n=2, it
indicates second-order accuracy; we have -1.96 which is approximately -2 i.e. a global accuracy of 2

Now we repeat using the Simpson’s Rule (Eq. (3)) and trapezoidal rule with end correction. However we can also
rewrite the Simpson’s Rule as the following by separating into even and odd terms

h n—1 n—2
I=3 fotfatd D fi+2 D
j=1 j=2
j=odd j=even
As for the trapezoidal rule with end correction, we have new term added
—h2

- 1F0) - 1)

Spring 2024 Page 19 of 32

FError vs. Number of Panels
—o— Trapezoid Rule
10°@ 3 —— Simpson Rule
\ i : —+— Trapezoid Rule with EC

107

Error (%)
o
L

i ; R S T L Sk i SRR ; i ...“.*_*_Il-—-

10" 10° 10° 10
Number of panels (n)

From the slope of the lines we can confirm that the global accuracy for the simpsons and trapezoidal rule is 3
from them having the same slope. Lastly, we have to perform adaptive methods to solve the integral. Adaptive
quadrature keeps adjusting the mesh size until a given tolerance. In this case we will use the Simpson’s rule to
evaluate this integral.

The code written uses adaptive quadrature, specifically adaptive Simpson’s rule, to approximate the integral of a
given function across a defined range. It breaks down the interval into smaller segments and adjusts the approx-
imation until it meets the desired accuracy set by the error tolerance. While the code works, there’s still room
for better understanding its inner workings. I didnt spend enough time to think through the results as much as I

would have liked

Spring 2024 Page 20 of 32

Integrand and Positions of Evaluations (Tolerance =0.01) Integrand and Positions of Evaluations (Tolerance = 1e-10)

1200

= Integrand = Integrand
+ Evaluation Points + Evaluation Points

1000 1 1000 |

1200

800 800

X 600 X 6001
400 400
200 200
§ L S S § A I NN I S |
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X
(a) (b)

14 Problem 3.9

Richardson extrapolation involves using the results obtained from two computations with different step sizes to
estimate the value of the integral with higher accuracy. Given the results for two different step sizes, we have to
use the Simpson’s rule to find a more accurate value for the integral, I. In the equation below, the subscript t will
refer to a more accurate value while a is the approximation. We know the Simpson’s rule has an order of accuracy
of 4 so we can say:

I;(h) = I,(h) + ch* + O(h®)
1(5) = L(5) + e(3)" + O(0)

We want to get rid of the ¢ term on h* to increase the accuracy so we can multiply the whole equation by 16 and
subtract it from the first equation

Ii(h) = I,(Rh) + ch* + O(h®)

h
20

) = 1) = 161,(5) = La(h) + O(1")

h h
167,(5) = 161a(5) + ch* + O((
h
161:(5

We then get a final solution of the form

h 161,(%) — I(h)
L(3) = 16 -1
by 16(11.801) — 12.045

5) " = 11.7847

It(

Additionally, I was able to come across a formula for the Richardson extrapolation where p is the order of conver-
gence, and in our case 4 for Simpson’s rule.
I, — I

Iextrapolation = 12 + I
(B =1
ha

Spring 2024 Page 21 of 32

15 Appendix

15.1 Question 2

clear;close all;clc
% Given function
f = @(x) sin(2*x) .* cos(20*x) + exp(sin(2*x));

% Analytic first derivative
df _exact = 0(x) 2*cos(2*x) .*(exp(sin(2*x))+cos(20*x)) - 20*sin (2*x) .*sin (20%*x) ;

% Forward difference
forward = @(x,h) (£f(x+h) - f(x))/h;

% Second Order Central difference
central_second = @(x,h) (f(x+h) - f(x-h))/(2%xh);

% Fourth order Central difference
central_fourth = @(x,h) (f(x-2*h) - 8xf(x-h) + 8*f(x+h) - f(x+2*h))/(12xh);

% Upper and lower limits of integration
1b = 0;
ub = 2%*pi;

% Number of intervals that discretize x
N = [256 512 1024 2048];

N = 2.7(8:13);

% Initialize arrays to store errors
error_forward = zeros(size(N));
error_central_second = zeros(size(N));
error_central_fourth = zeros(size(N));
error_padel = zeros(size(N));
error_pade2 = zeros(size(N));

H = zeros(size(N));

for ii = 1:length(N)
n = N(ii);
h = (ub - 1b) / n;
H(ii) = h;
grids = n+1;
x = linspace(lb, ub, grids);

% Compute numerical derivatives

df _forward = forward(x, h);

df _central_second = central_second(x, h);
df _central_fourth = central_fourth(x, h);

%Padel

Al = diag(4 * ones(grids, 1)) + diag(ones(grids-1, 1), 1) + diag(ones(grids
— -1, 1), -1);

A1(1,1:2) = [1 2];

Al1(grids,grids-1:grids) = [2 1];

bl = zeros(grids,1);
b1 (1) = -Bxf(x(1))/2 + 2*%f(x(2)) + f(x(3))/2;
b1(2:end-1) = 3*x(f(x(3:end))-f(x(1:end-2)));

Spring 2024 Page 22 of 32

bl (end) = 5*xf(x(grids))/2 - 2xf(x(grids-1)) - f(x(grids-2))/2;
bl = bil/h;

% Compute approximate derivative
df _padel = A1\bi;

%Pade2

A2 = diag(4 * ones(grids, 1)) + diag(ones(grids-1, 1), 1) + diag(ones(grids
— -1, 1), -1);

A2(1,end-1) = 1;

A2 (grids,2) 1;

b2 = zeros(grids,1);

b2(1) = £(x(2)) - f(x(grids-1));
b2(2:end-1) = (f(x(3:end))-f(x(1:end-2)));
b2(end) = £(x(2)) - f(x(end-1));

b2 = 3*b2/h;

% Compute approximate derivative
df _pade2 = A2\b2;

% Compute errors

error_forward(ii) = norm(df_exact(x) - df_forward, Inf);
error_central_second(ii) = norm(df_exact(x) - df_central_second, Inf);
error_central_fourth(ii) = norm(df_exact(x) - df_central_fourth, Inf);

error_padel (ii) = norm(df_exact(x) - df_padel', Inf);
error_pade2(ii) = norm(df_exact(x) - df_pade2', Inf);
end

% Plot the results

loglog(H, error_forward, 'bo-','LineWidth',2, 'DisplayName', 'FD');

hold on;

loglog(H, error_central_second, 'rx-','LineWidth',2, 'DisplayName', 'CD2');
loglog(H, error_central_fourth, 'gs-','LineWidth',2, 'DisplayName', 'CD4');
loglog(H, error_padel, 'md-','LineWidth',2, 'DisplayName', 'Pade4d-1');
loglog(H, error_pade2, 'c*-','LineWidth',2, 'DisplayName', 'Pade4-2');

% Plot asymptotes for 1st, 2nd, 3rd, and 4th order lines

orderl = (H/H(1))."1;
order2 = (H/H(1))."2;
order3 = (H/H(1))."3;
order4 = (H/H(1))."4;

loglog(H, orderl, 'k+--', 'LineWidth', 0.5, 'DisplayName', 'lst order');
loglog(H, order2, 'kp--', 'LineWidth', 0.5, 'DisplayName', '2nd order');
1oglog(H, order3, 'kh--', 'LineWidth', 0.5, 'DisplayName', '3rd order');
loglog(H, order4, 'k|--', 'LineWidth', 0.5, 'DisplayName', '4th order');
xlabel ('\Delta');

ylabel ('L_{\infty} Error');

title('Comparison of Finite Difference Schemes');

legend ('location', 'best');

grid on

axis tight

set (gcf, 'Color','w')

Spring 2024 Page 23 of 32

15.2 Question 3 Problem 2.1

clear;clc
% Define the function
f = @(x) sin(5%*x);

% Define the exact second derivative
exact_second_derivative = -25%sin(5%1.5);

% Define the range of h values
h_values = logspace(-4, 0, 100);

% Initialize arrays to store errors
error_fd2 = zeros(size(h_values));
error_popular = zeros(size(h_values));

% Calculate errors for different values of h
for i = 1:1length(h_values)
h_values (i) ;

=3
]

% Finite

% difference formula derived from two applications of the first-derivative
— operator

second_derivative_fd2 = (£(1.5 + 2xh) - 2xf(1.5) + £(1.5 - 2%h))/(4%*h~2) -
<~ h~2/6 *x (£(1.5 + h) - 2x£f(1.5) + 2xf(1.5 - h));

% Popular second-derivative formula
second_derivative_popular = (£(1.5 + h) - 2*xf(1.5) + £(1.5 - h))/(h~2);

% Calculate errors

error_fd2(i) = abs(second_derivative_fd2 - exact_second_derivative);
error_popular (i) = abs(second_derivative_popular - exact_second_derivative)
—

end

% Plot errors on a log-log scale

loglog(h_values, error_fd2, 'b-', 'DisplayName', 'Finite Difference Formula');
hold on
loglog(h_values, error_popular, 'r--', 'DisplayName', 'Popular Formula');

xlabel ('Step Size (h)');

ylabel ('Absolute Error');

title('Comparison of Second Derivative Formulas');
legend('location', 'best');

grid on;

set (gcf, 'Color','w')

15.3 Question 4: Problem 2.2

clear;clc
syms a0 al a2 a3 h

eqnl = a0 + al + a2 + a3 == 0;
eqn2 = -a0xh + 2*%xa3*xh + a2xh == 1;
eqn3d =

a0 + a2+4*xa3 == 0;
-a0 +a2 + 8xa3d ==

eqn4 0;

Spring 2024 Page 24 of 32

% Solve te system of equations for al, a2, a3, a4, and b2 in terms of
sol_ = solve([eqnl, eqn2, eqn3, eqn4], [a0, al, a2, a3], 'ReturnConditions',
<~ true);

%» Extracting solutions in terms of

a0_ = sol_.a0;
al_ = sol_.al;
a2_ = sol_.a2;
a3_ = sol_.a3;

% Display te solutions
disp(a0_)
disp(al_)
disp(a2_)
disp(a3_.)

15.4 Question 5 Problem 2.3

% Define the range of kxdelta values
k_delta = linspace(0, pi, 100);

% Calculate modified wavenumber for second-order central difference scheme
k_prime_central = sin(k_delta);

% Calculate modified wavenumber for fourth-order Pad scheme
k_prime_pade = 3 * sin(k_delta) ./ (2 + cos(k_delta));

% Plot the results

plot(k_delta, k_prime_central, 'b-', 'LineWidth', 2, 'DisplayName', 'Second
< Order Central Difference');

hold on;

plot(k_delta, k_prime_pade, 'r--', 'LineWidth', 2, 'DisplayName', 'Fourth Order
< Pad Scheme');

plot(k_delta, k_delta, 'k-.', 'LineWidth', 1, 'DisplayName', 'Exact'); %
— Straight line y=x

xlabel ('$k\Delta$', 'Interpreter', 'latex');

ylabel ('$k~\prime\Delta$', 'Interpreter', 'latex');

title('Modified Wavenumber Comparison');

legend('location', 'best');

grid on;

axis tight
set (gcf, 'Color','w')

15.5 Question 7 Problem 2.8 a and b

clear;clc

syms al a2 a3 a4 b2 h

eqnl = al + a2 + a3 == 0;

eqn2 = -a2*xh - 2*xa3*h + a4 == 0;

Spring 2024 Page 25 of 32

eqn3d = a2*xh~2 + 4*xa3*h~2 + ad4d*xh == 2%b2 + 2;
eqn4 = -(1/6)*a2*h~3 - (8/6)*a3*h~3 +(1/8)*a4*h~2 == -b2x*h;
eqnb = (1/24)*a2xh~4 +(16/24)*a3*xh~4 + (1/48)*a4*h~3 == (1/2)*b2*h"2;

% Solve the system of equations for al, a2, a3, a4, and b2 in terms of h
sol_h = solve([eqnl, eqn2, eqn3, eqn4, eqnb], [al, a2, a3, a4, b2], '
< ReturnConditions', true);

% Extracting solutions in terms of h
al_h = sol_h.al;

a2_h = sol_h.a2;
a3_h = sol_h.a3;
a4_h = sol_h.a4;
b2_h = sol_h.b2;

% Display the solutions
disp(al_h)
disp(a2_h)
disp(a3_h)
disp(a4_h)
disp (b2_h)

15.6 Question 7 Problem 2.8d

% This script solves the ode y''+y = x~2
clear;close all;clc

%“Define the parameters

N = 24; 7 Number of grid points

h =1/ N; % Step size

1b = 0.5%h; %lower bound

ub = 1-0.5%h; Jupper bound

x = linspace(lb, ub, N)'; 7 Grid points

% Define the tridiagonal matrices A and B for the finite difference
<~ approximation of the second derivative

A = diag((10/12) * ones(N, 1)) + diag((1/12)*ones(N-1, 1), 1) + diag((1/12)%*
< ones(N-1, 1), -1);

AC1,1) = 1;

A(1,2) = -11/23;
A(N,N) = 1;
A(N,N-1) = -11/23;

B = diag(-2 * ones(N, 1)) + diag(ones(N-1, 1), 1) + diag(ones(N-1, 1), -1);
B(1,1) = -36/23;

B(1,2) = 48/23;
B(1,3) = -12/23;
B(N,N) = -36/23;
B(N,N-1) = 48/23;
B(N,N-2) = -12/23;

B =B/ (h"2);

% Define matrix C = A + B
C = A + B;

Spring 2024 Page 26 of 32

% Define the right-hand side function
b = A x (x.73);

% Solve the linear system to find y
y = C \ b;

% Exact solution
exact_solution = x.7°3 - 6%xx + 6*xsin(x) + 3*(2*cos(1) -1)*csc(1)*cos(x);

% Plot the exact and numerical solutions
plot(x, y, 'b-o', x, exact_solution, 'r--');
xlabel('x"');

ylabel ('y(x)');

title('Exact and Numerical Solutions');
legend (' Numerical Solution', 'Exact Solution');
set (gcf, 'Color','w')

axis tight

15.7 Question 8 Problem 2.10a

% Calculation of Derivatives on a Non-uniform Mesh
clear;close all;clc

% Given function

f = 0(x) 1 - x.78;

%Exact derivative

Df = @(x) -8 * x.77;

Dg = @(x,a) a./((1-(a*x)."2)+*atanh(a));

% Setup

a = 0.9;

N = 32;

J = 0:N;

xi = -1 + 2xJ./N;

x = 1/a * tanh(xi*atanh(a));

% Central difference formula

dx = x(3:end) - x(1l:end-2);

df = f(x(3:end)) - f(x(1:end-2));
df _dx = df ./ dx;

% Plotting

figure;

plot(x(2:end-1), df_dx,'LineWidth', 2, 'Marker', 'o', 'MarkerSize',6 6);

xlabel ('x', 'Interpreter', 'latex');

ylabel ('$f''(x)$', 'Interpreter', 'latex');

title('Derivative of $f(x)$ using Central Difference Formula', 'Interpreter', '
— latex');

% Exact derivative computation
exact_derivative = Df(x);

% Plotting exact derivative

Spring 2024 Page 27 of 32

hold on;

plot(x, exact_derivative,'--', 'LineWidth', 2);
legend ('Central Difference', 'Exact Derivative');
set (gcf, 'Color','w')

hold off

% Calculate derivative
delta_xi = xi(6) - xi(5); % Any consecutive indices work
df _dxi = (£f(x(3:end)) - f(x(1:end-2))) / (2 * delta_xi);

df _dx2 = df_dxi .* Dg(x(2:end-1), a);
errorl = max(abs(exact_derivative(2:end-1) - df_dx));
error2 = max (abs(exact_derivative(2:end-1) - df_dx2));

disp(errorl)
disp(error2)

% Plotting

figure;

plot(x(2:end-1), df_dx2, 'LineWidth', 2, 'Marker', 'o', 'MarkerSize',6 6);

xlabel ('x', 'Interpreter', 'latex');

ylabel ('$f''(x)$', 'Interpreter', 'latex');

title('Derivative of $f(x)$ using Coordinate Transformation Method', '
— Interpreter', 'latex');

% Plotting exact derivative

hold on;

plot(x, exact_derivative,'--', 'LineWidth', 2);

legend('Central Difference', 'Exact Derivative');

set (gcf, 'Color','w')

hold off

15.8 Question 8 Problem 2.10b

% Calculation of Derivatives on a Non-uniform Mesh
clear;close all;clc

% Given function

f = 0(x) 1 - x.78;

%Exact derivative

Df = @(x) -8 *x x.77;

Dg = @(x) -1./sqrt(l-x.72);

% Setup

N = 75;

J = 0:N;

xi = (pi*J)/N;
x = cos(xi);

% Central difference formula

dx = x(3:end) - x(l:end-2);

df = f(x(3:end)) - f(x(1l:end-2));
df _dx = df ./ dx;

% Plotting
figure;

Spring 2024 Page 28 of 32

plot(x(2:end-1), df_dx,'LineWidth', 2, 'Marker', 'o', 'MarkerSize', 6);

xlabel ('x', 'Interpreter', 'latex');

ylabel ('$f' ' (x)$', 'Interpreter', 'latex');

title('Derivative of $f(x)$ using Central Difference Formula', 'Interpreter', '

— latex');

% Exact derivative computation
exact_derivative = Df (x);

% Plotting exact derivative

hold on;

plot(x, exact_derivative,'--', 'LineWidth', 2);
legend ('Central Difference', 'Exact Derivative');
set (gcf, 'Color','w')

hold off

% Save image with specific name
saveas (gcf, 'q2_10bcentral_difference.jpg'); % Save the image as "
— central_difference.png"

% Calculate derivative
delta_xi = xi(6) - xi(5); % Any consecutive indices work
df _dxi = (f(x(3:end)) - f(x(1:end-2))) / (2 * delta_xi);

df _dx2 = df_dxi .x Dg(x(2:end-1));
errorl = max(abs(exact_derivative(2:end-1) - df_dx));
error2 = max(abs(exact_derivative(2:end-1) - df_dx2));

disp(erroril)
disp(error2)

% Plotting

figure;

plot(x(2:end-1), df_dx2, 'LineWidth', 2, 'Marker', 'o', 'MarkerSize', 6);

xlabel ('x', 'Interpreter', 'latex');

ylabel ('$f''(x)$', 'Interpreter', 'latex');

title('Derivative of $f(x)$ using Coordinate Transformation Method', '
— Interpreter', 'latex');

% Plotting exact derivative

hold on;

plot(x, exact_derivative,'--', 'LineWidth', 2);

legend('Central Difference', 'Exact Derivative');

set (gcf, 'Color','w')

hold off

% Save image with specific name

saveas (gcf, 'q2_10bCoordinate Transformation.jpg');

15.9 Question 12 Problem 3.6

% This script solves for the Fredholm Equation
clear;close all;clc

N = 60;% Number of grid points

1b = 0; %lower bound

ub pi; %upper bound

Spring 2024 Page 29 of 32

[=
I

(ub-1b) / (N-1); 7% Step size

X linspace (lb,ub,N)';
%Create f column vector
f = -pi*xx."2;

%Preallocate A matrix
A = zeros(N,N);

for ii = 1: length(x) %fill the rows
A(ii,1) = 0.5*xh*3*%(0.5*sin(3*x(ii)) - x(1)*x(ii)~2);
A(ii,N) = 0.5%h*3*x(0.5*xsin(3*x(ii)) - x(N)*x(ii)~2);

for jj = 2:length(x)-1 %fill the columns
A(ii,jj) = 3*%h*(0.5*xsin(3*x(ii)) - x(jj)*x(ii)~2);
end

ACii,ii) = -1+ A(dii,ii);
end

%Solve for phi
phi = A\f;

% Exact solution
exact_solution =sin(3*x);

% Plot the exact and numerical solutions
plot(x, phi, 'b-o', x, exact_solution, '
xlabel ('x"');

ylabel ('y(x) ') ;

title('Exact and Numerical Solutions');
legend (' Numerical Solution', 'Exact Solution');
set (gcf, 'Color','w')

axis tight

r--');

Question 13 Problem 3.8

clear;close all;clc

% Given function
f = @(x) 100./sqrt(x+ 0.01) + 1./((x - 0.3).72 + 0.001) - pij;
fdiff = @(x) -50./(x+ 0.01)"1.5 - (2%(x-0.3))./((x - 0.3).72 + 0.001)"~2;

% Upper and lower limits of integration
a = 0;
b =1;

% Exact value of the integral (if available)
exact_integral = integral(f, a, b);

% Values of n (number of panels)
n_values = 2.°(3:15);

Spring 2024 Page 30 of 32

% Preallocate arrays to store errors and panel lengths
errors = zeros(size(n_values));
h_values = zeros(size(mn_values));

% Calculate errors for different values of n
for i = 1:length(n_values)

n = n_values (i) ;
(b - a) / n; % Calculate step size
h_values (i) = h;

=3
|

% Calculate the approximate integral using the trapezoidal rule
x = linspace(a, b, n + 1); % Generate x-values for the panels
y = £f(x); % Evaluate the function at x-values

y_odd = y(2:2:end-1);
y_even = y(3:2:end-2);

approximate_integral_trapezoid = 0.5%h * ((y(1) + y(end)) + 2*xsum(y(2:n)));
— % Trapezoidal rule formula

approximate_integral_simpsons = (h/3) * (y(1) + 4*sum(y_odd) + 2*xsum(y_even
—) + y(end)); % Simpson's rule formula

approximate_integral_trapezoid_EC= approximate_integral_trapezoid -h~2/12
— x(fdiff(x(end)) - fdiff(x(1)));

% Calculate the error percentage

errors(i,1) = abs(exact_integral - approximate_integral_trapezoid)/
— exact_integral *100;
errors(i,2) = abs(exact_integral - approximate_integral_simpsons)/
— exact_integral *100;
errors(i,3) = abs(exact_integral - approximate_integral_trapezoid_EC)/

— exact_integral *100;
end

% Plot error percentage vs. number of panels on a log-log scale

loglog(n_values, errors(:,1), 'bo-','DisplayName','Trapezoid Rule');

hold on

loglog(n_values, errors(:,2), 'ro-',6'DisplayName','Simpson Rule');
loglog(n_values, errors(:,3), 'm*-',6'DisplayName','Trapezoid Rule with EC');
xlabel ('Number of panels (n)', 'Interpreter', 'latex');

ylabel ('Error (\%)', 'Interpreter', 'latex');

title('Error vs. Number of Panels', 'Interpreter', 'latex');

axis tight

legend

grid on

Simp= errors(:,2);

TrapEC= errors(:,3);

% Find the slope and intercept of the line using linear regression
p2 = polyfit(log(n_values(2:end)), log(Simp(2:end)), 1);

slope2 = p2(1);

intercept2 = p2(2);

% Find the slope and intercept of the line using linear regression
p3 = polyfit(log(n_values(2:end)), log(TrapEC(2:end)), 1);
slope3 = p3(1);

Spring 2024 Page 31 of 32

intercept3 = p3(2);

% Create the equation of the line

line_equation3 = sprintf('$n~{%.2f}$', slope3);

line_equation2 = sprintf (' $n~{%.2f}$', slope2);

% Add the equation of the line to the plot

text (1500, 3.4e-6, line_equation2, 'Interpreter', 'latex', 'FontSize', 12);
text (40, 0.00299, line_equation3, 'Interpreter', 'latex', 'FontSize', 12);

% Specify a range of error tolerances
tolerances = [le-2, 1le-10];

% Evaluate the integral using adaptive quadrature with different tolerances
for i = 1:length(tolerances)
% Initialize a cell array to store x points for the current tolerance

x_points = [];

tolerance = tolerances(i);

fa = f(a); % Evaluate function at endpoints
fb = f(b);

% Evaluate the integral using adaptive quadrature
integral_value = adaptive_quadrature(f, a, b, fa, fb, tolerance);

% Store evaluation points (endpoints and midpoints)
x_points = unique([x_points, a, b, (a+b)/2]);

% Plot the integrand and the positions of its evaluations for the current
— tolerance

figure;

x_values = linspace(a, b, 1000); 7 Generate points for smooth plotting
plot(x_values, f(x_values), 'b-', 'LineWidth', 1.5); % Plot the integrand
hold on;

scatter (x_points, f(x_points), 'r.'); % Scatter plot of evaluation points

xlabel ('x');
ylabel ('f(x)"');

title(['Integrand and Positions of Evaluations (Tolerance = ', num2str(
< tolerance), ')']);

1egend('Integrand’, '"Evaluation Points');

grid on;

end

% Define the recursive adaptive quadrature function
function integral_value = adaptive_quadrature(func, a, b, fa, fb,tolerance)
c = (a+ b) / 2; % Midpoint

h =b - a; % Width of the interval

fc = func(c); % Function evaluation at the midpoint

S =(h / 6) * (fa + 4%xfc + fb); 7% Coarse Simpson's rule approximation
d (a + ¢) / 2;

e = (c +b) / 2;

fd = func(d);

fe = func(e);

S_left = (h / 12) * (fa + 4xfd + fc);) Left half interval approximation
S_right = (h / 12) * (fc + 4xfe + fb);) Right half interval approximation
S2 = S_left + S_right; 7 Fine Simpson's rule approximation

if abs(S2 - S8) <= 15 * tolerance

Spring 2024 Page 32 of 32

integral_value S2 + (82 - 8) / 15; % Error corrected result

else
integral_value = adaptive_quadrature(func, a, c, fa, fc, tolerance) +
adaptive_quadrature (func, c, b, fc, fb,tolerance); 7% Recursive call on
<~ subintervals
end

end

	Problem 1
	Problem 2
	Problem 2.1
	Problem 2.2
	Problem 2.3
	Problem 2.4
	Problem 2.8
	Problem 2.10
	Problem 3.2
	Problem 3.3
	Problem 3.5
	Problem 3.6
	Problem 3.8
	Problem 3.9
	Appendix
	Question 2
	Question 3 Problem 2.1
	Question 4: Problem 2.2
	Question 5 Problem 2.3
	Question 7 Problem 2.8 a and b
	Question 7 Problem 2.8d
	Question 8 Problem 2.10a
	Question 8 Problem 2.10b
	Question 12 Problem 3.6

