
ENM 5220: Numerical Methods for PDEs
Assignment 1: Numerical Differentiation and Intergration
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1 Problem 1
No submission

2 Problem 2
Numerically evaluate the derivative of the following function:

f(x) = sin(2x) · cos(20x) + esin(2x), x ∈ [0, 2π], (1)

using:
i) first-order forward finite difference scheme,

fij =
fi+1 − fj

h

ii) second-order central finite difference scheme,

fij =
fi+1 − fi−1

2h

iii) fourth-order central finite difference scheme, and

fij =
fi−2 − 8fi−1 + 8fi+1 − fi+2

12h

iv) fourth-order Padé scheme.

f ′j+1 + f ′j−1 + 4f ′j =
3

h
(fj+1 − fj−1) +

h4

30
f
(v)
j

For the boundaries:
f ′0 + 2f ′1 =

1

h

(
−5

2
f0 + 2f1 +

1

2
f2

)
f ′n + 2f ′n−1 =

1

h

(
5

2
fn − 2fn−1 −

1

2
fn−2

)
Consider N = 256, 512, 1024 and 2048, where N is the number of intervals to discretize the x domain.
For the periodic case we have the following boundary conditions:

f ′N−1 + f ′1 + 4f ′0 =
3

h
(f1 − fN−1)

f ′N−1 + f ′1 + 4f ′N =
3

h
(f1 − fN−1)

The matrix for the third order one sided boundary conditions will be

A =



1 2 0 · · · 0 0
1 4 1 · · · 0 0
0 1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 1
0 0 0 · · · 2 1



b =



1
h

(
− 5

2f0 + 2f1 +
1
2f2

)
3
h (f2 − f1)
3
h (f3 − f2)

...
3
h (fN − fN−1)

1
h

(
5
2fn − 2fn−1 − 1

2fn−2

)


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The matrix for the periodic boundary conditions will be

A =



4 1 0 · · · 1 0
1 4 1 · · · 0 0
0 1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 1
0 1 0 · · · 1 4



b =
3

h



(f1 − fN )
(f2 − f1)
(f3 − f2)

...
(fN − fN−2)
(f0 − f2)


The Thomas Algorithm uses LU decomposition to solve tridiagonal matrices, however, for the case with the periodic
boundary conditions, we have two off diagonal terms which means we cannot use it to solve this problem.
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3 Problem 2.1

a.
To determine whether the given finite difference expression holds, let’s apply the central finite difference operator
to the expression unvn:

δ(unvn)

δx
=
un+1vn+1 − un−1vn−1

2h
.

Expanding this expression (LHS):
δ(unvn)

δx
=
un+1vn+1

2h
− un−1vn−1

2h
.

Now, let’s express this in terms of finite differences (RHS):

δ(unvn)

δx
=
un+1 − un−1

2h
· vn +

vn+1 − vn−1

2h
· un.

Comparing this with the analogous finite difference expression:

δ(uv)

δx
= u

δv

δx
+ v

δu

δx
,

we can see that the given finite difference expression does not directly match the analogous finite difference expres-
sion from calculus. Therefore, the given finite difference expression does not hold as stated.

b.
Let’s evaluate the right-hand side:

ūn
δvn
δx

+ v̄n
δun
δx

Given:

ūn =
1

2
(un+1 + un−1), v̄n =

1

2
(vn+1 + vn−1)

Now, let’s evaluate each term:

ūn
δvn
δx

=
1

2
(un+1 + un−1)

vn+1 − vn−1

2h

=
1

4h
(un+1vn+1 − un+1vn−1 + un−1vn+1 − un−1vn−1)

Similarly,

v̄n
δun
δx

=
1

2
(vn+1 + vn−1)

un+1 − un−1

2h

=
1

4h
(vn+1un+1 − vn+1un−1 + vn−1un+1 − vn−1un−1)

Adding both terms together:

δ(unvn)

δx
= ūn

δvn
δx

+ v̄n
δun
δx

=
1

2h
(un+1vn+1 − un−1vn−1)

So, both sides of the equation are equal, thus confirming the validity of the given expression.
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c.
Show that

ϕ
δψ

δx
=

δ

δx
(ϕψ)− ψ

δϕ

δx

Starting with the RHS:

¯ϕn+1ψn+1 − ¯ϕn−1ψn−1

2h
− 1

2

[
ψn+1

δϕn+1

δx
+ ψn−1

δϕn−1

δx

]
(ϕn+2 + ϕn)ψn+1 − (ϕn + ϕn−2)ψn−1

4h
− ψn+1(ϕn+1 − ϕn) + ψn−1(ϕn − ϕn−2)

4h

This reduces to a a form of the finite difference which is equal to the LHS.

ϕn(ψn+1 − ψn−1)

2h
= ϕ

δψ

δx

d.
To derive a finite difference formula for the second-derivative operator from two applications of the first-derivative
finite difference operator, let’s start by defining the first-derivative finite difference operator as:

δu

δx
≈ ui+1 − ui−1

2h
+
h2

6
u

′′′

i

where h is the spacing between grid points.
Now, applying this operator twice to u, we get:

δ2u

δx2
≈ δ

δx

(
ui+1 − ui−1

2h
− h2

6
u

′′′

i

)
Expanding the derivative on the right-hand side:

δ

δx

(
ui+1 − ui−1

2h

)
≈

(
ui+2−ui

2h − h2

6 u
′′′

i+1

)
−
(

ui−ui−2

2h − h2

6 u
′′′

i−1

)
2h

Simplifying:

δ2u

δx2
≈ ui+2 − 2ui + ui−2

4h2
− h

12
(u

′′′

i+1 + u
′′′

i−1)−
1

6
h2u

(iv)
i

δ2u

δx2
≈ ui+2 − 2ui + ui−2

4h2
− h2

6
(u

′′′

i + uivi )

This gives us the finite difference formula for the second-derivative operator using two applications of the first-
derivative finite difference operator.
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Looking at the graphs, we can see that they have the same slope (1.9) which means that they have the same order
of accuracy of 2. Because the graphs are slightly shifted from one another, we can also deduce that the given
popular equation leading term error has a magnitude smaller that the one derived (about 4 times smaller: i divided
the points at the intercept to get this value). Looking at my derivation for the leading order error term, I assume
I made an arithmetic error hence the two derivative terms that remain in the error.

4 Problem 2.2
Find the most accurate formula for the first derivative at xi utilizing known values of f at xi−1, xi, xi+1 and xi+2.
The points are uniformly spaced. Give the leading error term and state the order of the method
We will begin by first creating the taylor table for this scheme

fi f ii f iii f iiii f ivi

a0fi−1 a0 −a0h 1
2a0h

2 − 1
6a0h

3 1
24a0h

4

a1fi a1 0 0 0 0
a2fi+1 a2 a2h

1
2a2h

2 1
6a2h

3 1
24a2h

4

a3fi+2 a3 2a3h 2a3h
2 4

3a3h
3 2

3a
4
3

f ii 0 1 0 0 0
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a0fi−1 + a1fi + a2fi+1 + a3fi+2 = (a0 + a1 + a2 + a3)fi + (−a0 + a2 + 2a3)hf
i
i

+ (
1

2
a0 +

1

2
a2 + 2a3)h

2f iii + (−1

6
a0 +

1

6
a2 +

4

3
a3)h

3f iiii + (
1

24
a0 +

1

24
a2 +

2

3
a3)h

4f ivi

We want the coefficient of the first derivative to be equal to 1 and have the rest equal to zero

a0 + a1 + a2 + a3 = 0

a0 + 0 + a2 + 4a3 = 0

−a0 + 0 + a2 + 2a3 = 1

−a0 + 0 + a2 + 8a3 = 0

Solving this simultaneously, we get

a0 = − 1

3h

a1 = − 1

2h

a2 =
1

h

a3 = − 1

6h

We plug these values back into our combined equation

− 1

3h
fi−1 −

1

2h
fi +

1

h
fi+1 −

1

6h
fi2 = hf ii −

1

12
h4f ivi

f ii =
−2fi−1 − 3fi + 6fi+1 − fi+2

6h2
+O(h3)

The leading error term is given by −1
12 h

3f ivi and the order of this method is third order accurate

5 Problem 2.3
Verify that the modified wavenumber for the fourth-order Pade’ scheme for the first derivative is

k′ =
3 sin(k∆)

∆(2 + cos(k∆)
(1)

The fourth order Pade’ formula for numerical differentiation is given below in the textbook as described by equation
2.16 in the textbook

f ′j+1 + f ′j−1 + 4f ′j =
3

∆
(fj+1 + fj−1) +

∆4

30
fvj

f(x) = eikx

f ′(x) = ikeikx

ikeikxj+1 + ikeikxj−1 + 4ikeikxj =
3

∆
(eikxj+1 − eikxj−1)
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We then collect all the ik terms to one side of the equation with h equal to ∆

ikeik(x+∆) + ikeik(x−∆) + 4ikeikx =
3

∆
(eik(x+∆) − eik(x+∆))

ikeikx(eik∆ + e−ik∆ + 4) =
3

∆
eikx(eik∆ − e−ik∆)

cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i

ik(2 cos(k∆) + 4) =
3

∆
(2i sin(k∆))

ik =
3(2i sin(k∆))

∆(2 cos(k∆) + 4)

k′ =
3 sin(k∆)

∆(2 + cos(k∆))

6 Problem 2.4
A general Pade’ type boundary scheme (at i=0) for the first derivative which does not alter the tri-diagonal structure
of the matrix in equation 2.16 can be written as

f ′0 + αf ′1 =
1

h
(af0 + bf1 + cf2 + df3) (2)

a. Show that requiring this scheme to be at least third order accurate would constrain the coefficients to
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a = −11 + 2α

6
, b =

6− α

2
, c =

2α− 3

2
, d =

2− α

6

b. Find all the coefficients such that the scheme would be fourth-order accurate.

We will first create a Taylor table evaluated about f0 We can then sum up the coefficients and then set them to

f0 f i0 f ii0 f iii0 f iv0 fv0

f i0 0 1 0 0 0 0
αf i1 0 α αh 1

2αh
2 1

6αh
3 1

24αh
4

af0 a 0 0 0 0 0
bf1 b bh 1

2bh
2 1

6bh
3 1

24bh
4 1

120bh
5

cf2 c 2ch 2ch2 4
3ch

3 2
3ch

4 4
15ch

5

df3 d 3dh 9
2dh

2 9
2dh

3 27
8 dh

4 81
40dh

5

zero so that we can get rid of the lower order terms, giving us higher accuracy.

a+ b+ c+ d = 0

b+ 2c+ 3d = 1 + α

1

2
bh+ 2ch+

9

2
dh+ αh = 0

1

6
bh2 +

4

3
ch2 +

9

2
dh2 +

1

2
αh2 = 0

Rewriting the equations we get

a = −(b+ c+ d)

b+ 2c+ 3d = 1 + α

b+ 4c+ 9d = 2α

b+ 8c+ 27d = 3α

We can then solve the equations simultaneously

b = −4c− 9d+ 2α

(−4c− 9d+ 2α) + 2c+ 3d = 1 + α

(−4c− 9d+ 2α) + 8c+ 27d = 3α

Simplify further to

−2c− 6d = 1− α

4c+ 18d = α

Multiply the first equation by 2 and add

−4c− 12d = 2− 2α

4c+ 18d = −α

This gives

6d = 2− α

d =
2− α

6
(d equation)
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We plug this to get the value of c

4c+ 18(
2− α

6
) = −α

4c+ 6− 3α = α

4c = 4α− 6

c =
2α− 3

2
(c equation)

We can then solve for b and a

b = −4(
2α− 3

2
)− 9(

2− α

6
) + 2α

b = 2α− 4α+ 6− 3 +
3α

2

b =
6− α

2
(b equation)

a = −(
6− α

2
+

2α− 3

2
+

2− α

6
)

a = −(
18− 3α+ 6α− 9 + 2− α

6

a = −11 + 2α

6
(a equation)

In order to make this fourth order accurate, we want the coefficients of the fourth derivative to be equal to zero as
well. This gives us:

1

6
α =

1

24
b+

2

3
c+

27

8
d

4α = b+ 16c+ 81d

4α =
6− α

2
+ 16(

2α− 3

2
) + 81(

2− α

6
)

α = 3

We can then plug this alpha value back into our a,b,c and d equations

a =
−17

6

b =
3

2

c =
3

2

d = −1

6

7 Problem 2.8

a.
For the left boundary, derive a third-order Pade’ scheme to approximate y′′0 in the following form:

y′′1 + b2y
′′
2 = a1y1 + a2y2 + a3y3 + a4y

′
b +O(h3)
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y1 yi1 yii1 yiii1 yiv1 yv1

a1y1 a1 0 0 0 0 0

a2y2 a2 a2h
1
2a2h

2 1
6a2h

3 1
24a2h

4 1
120a2h

5

a3y3 a3 2a3h
4
2a3h

2 8
6a3h

3 16
24a3h

4 32
120a3h

5

a4y
′
b 0 a4

−h
2 a4

1
2a4(

−h
2 )2 1

6a4(
−h
2 )3 1

24a4(
−h
2 )4

y′′1 0 0 1 0 0 0

b2y2 0 0 b2 b2h
1
2b2h

2 1
6b2h

2

We have 5 unknowns so we need 5 equations to solve this problem

a1 + a2 + a3 = 0

a2h+ 2a3h+ a4 = 0

1

2
a2h

2 +
4

2
a3h

2 − a4h

2
= 2 + 2b2

1

6
a2h

3 +
8

6
a3h

3 +
1

8
a4h

2 = b2h

1

24
a2h

4 +
16

24
a3h

4 − 1

48
a4h

3 =
1

2
b2h

2

These equations can be solved using the solve function in Matlab giving results in terms of h. See Appendix ??

a1 =
−36

23h2

a2 =
48

23h2

a3 =
−12

23h2

a4 =
−24

23h2

b2 =
−11

23

We then obtain a final equation for the left boundary condition:

y′′1 − 11

23
y′′2 = − 36

23h2
y1 +

48

23h2
y2 −

12

23h2
y3 −

24

23h2
y′b

y′′1 − 11

23
y′′2 =

12

23h2
[−3y1 + 4y2 − y3 − 2hy′b]

b.
For the right boundary, we repeat the same process but instead take positive h/2 for the boundary term. This time
we will evaluate our taylor series about yN

a1 + a2 + a3 = 0

−a2h− 2a3h+ a4 = 0

1

2
a2h

2 +
4

2
a3h

2 +
a4h

2
= 2 + 2b2

−1

6
a2h

3 − 8

6
a3h

3 +
1

8
a4h

2 = −b2h

1

24
a2h

4 +
16

24
a3h

4 +
1

48
a4h

3 =
1

2
b2h

2
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yN yiN yiiN yiiiN yivN yvN

a1yN a1 0 0 0 0 0

a2yN−1 a2 -a2h 1
2a2h

2 - 16a2h
3 1

24a2h
4 - 1

120a2h
5

a3yN−2 a3 -2a3h 4
2a3h

2 - 86a3h
3 16

24a3h
4 - 32

120a3h
5

a4y
′
b 0 a4

h
2a4

1
2a4(

h
2 )

2 1
6a4(

h
2 )

3 1
24a4(

h
2 )

4

y′′N 0 0 1 0 0 0

b2yN−1 0 0 b2 -b2h 1
2b2h

2 - 16b2h
2

a1 =
−36

23h2

a2 =
48

23h2

a3 =
−12

23h2

a4 =
24

23h2

b2 =
−11

23

y′′N − 11

23
y′′N−1 =

12

23h2
[−3yN + 4yN−1 − yN−2 + 2hy′b]

c.
What are the elements of the matrices A and B operating on the interior and boundary nodes?

A


y′′1
y′′2
...

y′′N−1

y′′N

 = B


y1
y2
...

yN−1

yN


For the interior nodes, we have the following equation:

1

12
f ′′i−1 +

10

12
f ′′i +

1

12
f ′′i+1 =

fi+1 − 2fi + fi−1

h2

The matrices A and B will have the following form

A =



1 −11
23 0 0 0 0 0

1
12

10
12

1
12 0 0 0 0

0 1
12

10
12

1
12 0 0 0 0

0 0 0 0 1
12

10
12

1
12 0

0 0 0 0 0 1
12

10
12

1
12

0 0 0 0 0 0 −11
23 1


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B =
1

h2



−36
23

48
23

−12
23 0 0 0 0

1 −2 1 0 0 0 0
0 1 −2 1 0 0 0 0

0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 −12

23
48
23

−36
23


d.
Use this relationship to transform the ODE into a system with yi’s as unknowns. Use N = 24 and solve this
system. Do you actually have to invert A? Plot the exact and numerical solutions. Discuss your result. How are
the Neumann boundary conditions enforced into the discretized boundary value problem?

∂2y

∂x2
+ y = x3

We have an equation of the form Ay′′ = By and we can substitute this into our ODE Ay′′ +Ay = Ax3. This gives
us Ay + By = Ax3, simplifying this further we get (A + B)y = Ax3. To solve this system of equations, we define
a new matrix C = A + B and a vector b representing the right-hand side function x3. Thus, we have the system
Cy = b which can be solved for y. It’s important to note that we don’t necessarily need to invert the matrix C
explicitly. We can use Matlab’s backslash operator can efficiently solve the linear system.



Spring 2024 Page 13 of 32

The matrices A and B are constructed to include the boundary conditions in their entries, ensuring that the correct
boundary conditions are incorporated into the discretized problem.

8 Problem 2.10

a.
Consider the function f(x) = 1− x8 and a grid defined as follows:

j = 0, 1, 2, . . . , N

ξj = −1 + 2j/N

xj =
1
a tanh(ξj tanh

−1[a]), 0 < a < 1

The parameter a can be used to adjust the spacing of the grid points, with larger a placing more points near the
boundaries. For this problem, take a = 0.98 and N = 32.
(a) Compute and plot the derivative of f with the central difference formula (2.20) and the coordinate transformation
method described in Section 2.5 and compare with the exact derivative in −1 ≤ x < 1. How would the results
change with a = 0.9?
Using the central difference formula

f ′ =
fj+1 − fj−1

xj+1 − fx−1

(a) a =0.9 (b) a =0.98

Figure 1: Non-Uniform Grids using center difference

For the coordinate transform:
df

dx
=
dξ

dx

df

dξ

where

df

dξ
=
fj+1 − fj−1

2∆ξ

dξ

dx
=

a

arctan(a)(1− (ax)2)
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(a) a =0.9 (b) a =0.98

Figure 2: Non-Uniform Grids using Coordinate Transform

Comparing the two methods, there is no discernible difference in the graphs, even when varying the value of a
from 0.9 to 0.98. Upon calculating the L∞ error, it becomes apparent that as we decrease the value of a, the error
diminishes. It is noteworthy that the error resulting from the coordinate transformation method is consistently
lower than that from the finite difference method.

b.
Repeat part (a) with the transformation: 

j = 0, 1, 2, . . . , N

ξj =
πj
N

xj = cos(ξj)

We repeat the same procedure as above but only dξ
dx changes to −1√

1−x2
. The graphs produces look the same however,

the coordinate transform method had a larger error than previously. The method used in a is more accurate hence
the preferred method

(a) Center Difference (b) Coordinate Transform

Figure 3: Non-Uniform Grids using Center Difference and Coordinate Transform

c.
How many uniformly spaced grid points would be required to achieve the same accuracy as the transformation
method in (a)? The maximum error in the derivative over the domain for the uniform case should be less than or
equal to the maximum error over the domain for the transformed case.
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Using trial and error, I changed the number of panels but increasing their value. At about 75 panels, the error was
0.0508 which was the exact value obtained in a when a = 0.98. Hence I would approximate 76 grid points.

9 Problem 3.2
Show that

N−1∑
i=1

ui
∂v

∂x

∣∣∣∣∣
i

= −
N−1∑
i=1

vi
∂u

∂x

∣∣∣∣∣
i

+Boundary − Terms

Where ∂
∂x

∣∣
i
= the second-order central difference operator. From the LHS

∂v

∂x

∣∣∣∣
i

=
vi+1 − vi−1

2h

We expand our LHS we get:

N−1∑
i=1

ui
∂v

∂x

∣∣∣∣∣
i

=
1

2h
[u1(v2 − v0) + u2(v3 − v1) + u3(v4 − v2) + .....+ uN−2(vN−1 − vN−3) + uN−1(vN − vN−1)]

Our summation bounds are i = 1 to N − 1 so any term with i = 0 or i = N are our boundary terms.

1

2h
[−v0u1 − v1u2 − v2(u3 − u1)− v3(u4 − u2) + ...− vN−2(uN−1 − uN−3) + vN−1uN−2 + vNuN−1]

All the grouped terms are in the form of the second order central difference, just as we started but in this case the
operator is acting in u rather than v. Thsi gives us;

N−1∑
i=1

ui
∂v

∂x

∣∣∣∣∣
i

= −
N−1∑
i=1

vi
∂u

∂x

∣∣∣∣∣
i

+
1

2h
[−v0u1 − v1u2 + vN−1uN−2 + vNuN−1]

In comparison to integration by parts;

N−1∑
i=1

ui
∂v

∂x

∣∣∣∣∣
i

=

∫ N−1

1

u
dv

dx
dx = uv|N−1

i −
∫ N−1

1

v
du

dx
dx

We can then write this in a discretized form

N−1∑
i=1

ui
∂v

∂x

∣∣∣∣∣
i

= −
N−1∑
i=1

vi
∂u

∂x

∣∣∣∣∣
i

+ uv|N−1
i

This equation is of the same form as our given equation with the bounds in the case being a multiple of u and v
evaluated at the end points

10 Problem 3.3
Using the error analysis for the trapezoidal and rectangle rules, show that Simpson’s rule for integration over the
entire interval is fourth-order accurate.
The rectangle and trapezoidal rule are evaluated over an xi and xi+1 and are both third order accurate

∫ xi+1

xi

f(x)dx = hif(yi) +
h3i
24
f

′′
(yi) +

h5i
1920

f iv(yi) + ... (Midpoint Rule)

∫ xi+1

xi

f(x)dx =
h

2
[f(yi) + f(yi+1)]−

h3i
12
f

′′
(yi) +

h5i
480

f iv(yi) + ... (Trapezoid Rule)
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Simpsons rule is evaluated over xi and xi+2 so the number of divisions increases by a factor of 2, allowing us to
plug in 2h in place of h

∫ xi+2

xi

f(x)dx =

 2hif(yi) +
h3
i

3 f
′′
(yi) +

h5
i

60 f
iv(yi)

h[f(yi) + f(yi+1)]− 2h3
i

3 f
′′
(yi) +

h5
i

15 f
iv(yi)

We want to get rid of the second derivative term to achieve a higher accuracy so we multiply the first equation by
2 and add the two equations dividing 3 since 2I + I is our result.∫ xi+2

xi

f(x)dx =
h

3
[fi + 4fi+1 + fi+2]−

h5

60
f ivi+1 (3)

The local accuracy for this equation in fifth order accuracy so the global accuracy over the whole interval is fourth
order

11 Problem 3.5
Explain why the rectangle and trapezoidal rules can integrate a straight line exactly and the Simpson’s rule can
integrate a cubic exactly.
Both the Trapezoidal Rule and Rectangle Rule exhibit third-order accuracy, as demonstrated in the previous
question. These methods utilize two points for integration, resulting in quadratic approximations when applied
to linear functions. In cases of exact integration, any error term diminishes to zero. Similarly, Simpson’s Rule
integrates over a quadratic curve, yielding a cubic function as a result. This approach provides exact integration
for cubic functions, aligning with the leading order term of the polynomial approximation

12 Problem 3.6
We have been asked to find a way of solving the Fredholm equation where K(x, t) and f(x) are known

f(x) = ϕ(x) +

∫ b

a

K(x, t)ϕ(t)dt

As we discussed in class, we can use the Trapezoid Rule to solve this discrete and solve this problem. By comparison,
the bounds a and b are equal to x1 and xN

I =

∫ b

a

f(x)dx =
h

2

f(a) + f(b) + 2

n−1∑
j=2

fj

 (4)

f(x) = ϕ(x) +

∫ b

a

K(x, t)ϕ(t)dt

This gives us a discretized form of the Fredholm equation

f(xi) = ϕ(xi) +
h

2
[K(xi, x1)ϕ(x1) +K(xi, xN )ϕ(xN ) + 2

N−1∑
j=2

K(xi, xj)ϕ(xj)]

If we put this into matrix form, we will get an equation of the form Ax = b i.e Aϕ = f

A =



1 + h
2K(x1, x1) hK(x1, x2) hK(x1, xN−1)

h
2K(x1, xN )

h
2K(x2, x1) 1 + hK(x2, x2) hK(x2, xN−1)

h
2K(x2, xN )

h
2K(xN−1, x1) hK(xN − 1, x2) 1 + hK(xN−1, xN−1)

h
2K(xN − 1, xN )

h
2K(xN , x1) hK(xN , x2) hK(xN , xN−1) 1 + h

2K(xN , xN )





Spring 2024 Page 17 of 32

Our f matrix will be of the form

f =


f1
f2
...

fN−1

fN


To solve the equation below, we need to rearrange it into the form described above where our f(x) = πx2

ϕ(x) = πx2 +

∫ π

0

3(0.5 sin(3x)− tx2)ϕ(t)dt

Figure 4: Solution to cos(3x)

13 Problem 3.8
Numerically evaluate this integral using the trapezoidal rule with n panels of uniform length h. Make a log–log
plot of the percent error vs. n and discuss the accuracy of the method. Take n = 8, 16, 32 etc∫ 1

0

=

[
100√
x+ 0.01

+
1

(x− 0.3)2 + 0.001
− π

]
The Trapezoidal Rule is a method used to approximate the value of a definite integral by dividing the interval of
integration into smaller segments and approximating the area under the curve within each segment as shown in
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Eq. (4). We evaluate from j = 2 to j = n which is the total number of panels so the number of grid points will be
n+ 1

Ideally, as n increases (meaning more panels are used to approximate the integral), we expect the error percentage
to decrease, indicating higher accuracy. If the trapezoidal rule accurately approximates the integral, we should see
a decrease in error percentage with increasing n. In the log-log plot, we see a straight line with negative slope
indicating that the error decreases as n increases, suggesting that the method converges towards the true value of
the integral as the number of panels increases. The rate at which the error decreases with increasing n provides
insight into the order of accuracy of the trapezoidal rule. For example, if the error decreases by a factor of n−2, it
indicates second-order accuracy; we have -1.96 which is approximately -2 i.e. a global accuracy of 2
Now we repeat using the Simpson’s Rule (Eq. (3)) and trapezoidal rule with end correction. However we can also
rewrite the Simpson’s Rule as the following by separating into even and odd terms

I =
h

3

f0 + fn + 4

n−1∑
j=1

j=odd

fj + 2

n−2∑
j=2

j=even

fj


As for the trapezoidal rule with end correction, we have new term added

−h2

12
[f ′(b)− f ′(a)]
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From the slope of the lines we can confirm that the global accuracy for the simpsons and trapezoidal rule is 3
from them having the same slope. Lastly, we have to perform adaptive methods to solve the integral. Adaptive
quadrature keeps adjusting the mesh size until a given tolerance. In this case we will use the Simpson’s rule to
evaluate this integral.
The code written uses adaptive quadrature, specifically adaptive Simpson’s rule, to approximate the integral of a
given function across a defined range. It breaks down the interval into smaller segments and adjusts the approx-
imation until it meets the desired accuracy set by the error tolerance. While the code works, there’s still room
for better understanding its inner workings. I didnt spend enough time to think through the results as much as I
would have liked
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(a) (b)

14 Problem 3.9
Richardson extrapolation involves using the results obtained from two computations with different step sizes to
estimate the value of the integral with higher accuracy. Given the results for two different step sizes, we have to
use the Simpson’s rule to find a more accurate value for the integral, I. In the equation below, the subscript t will
refer to a more accurate value while a is the approximation. We know the Simpson’s rule has an order of accuracy
of 4 so we can say:

It(h) = Ia(h) + ch4 +O(h6)

It(
h

2
) = Ia(

h

2
) + c(

h

2
)4 +O(h6)

We want to get rid of the c term on h4 to increase the accuracy so we can multiply the whole equation by 16 and
subtract it from the first equation

It(h) = Ia(h) + ch4 +O(h6)

16It(
h

2
) = 16Ia(

h

2
) + ch4 +O((

h

2
)6)

16It(
h

2
)− It(h) = 16Ia(

h

2
)− Ia(h) +O(h6)

We then get a final solution of the form

It(
h

2
) =

16It(
h
2 )− It(h)

16− 1

It(
h

2
) =

16(11.801)− 12.045

16− 1
= 11.7847

Additionally, I was able to come across a formula for the Richardson extrapolation where p is the order of conver-
gence, and in our case 4 for Simpson’s rule.

Iextrapolation = I2 +
I2 − I1

(h1

h2
)p − 1
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15 Appendix

15.1 Question 2

1 clear;close all;clc
2 % Given function
3 f = @(x) sin(2*x) .* cos (20*x) + exp(sin (2*x));
4
5 % Analytic first derivative
6 df_exact = @(x) 2*cos(2*x).*( exp(sin(2*x))+cos (20*x)) - 20*sin(2*x).*sin (20*x);
7
8 % Forward difference
9 forward = @(x,h) (f(x+h) - f(x))/h;

10
11 % Second Order Central difference
12 central_second = @(x,h) ( f(x+h) - f(x-h))/(2*h);
13
14 % Fourth order Central difference
15 central_fourth = @(x,h) ( f(x-2*h) - 8*f(x-h) + 8*f(x+h) - f(x+2*h) )/(12*h);
16
17 % Upper and lower limits of integration
18 lb = 0;
19 ub = 2*pi;
20
21 % Number of intervals that discretize x
22 N = [256 512 1024 2048];
23 N = 2.^(8:13);
24 % Initialize arrays to store errors
25 error_forward = zeros(size(N));
26 error_central_second = zeros(size(N));
27 error_central_fourth = zeros(size(N));
28 error_pade1 = zeros(size(N));
29 error_pade2 = zeros(size(N));
30 H = zeros(size(N));
31
32 for ii = 1: length(N)
33 n = N(ii);
34 h = (ub - lb) / n;
35 H(ii) = h;
36 grids = n+1;
37 x = linspace(lb, ub , grids);
38
39 % Compute numerical derivatives
40 df_forward = forward(x, h);
41 df_central_second = central_second(x, h);
42 df_central_fourth = central_fourth(x, h);
43
44 %Pade1
45 A1 = diag(4 * ones(grids , 1)) + diag(ones(grids -1, 1), 1) + diag(ones(grids

↪→ -1, 1), -1);
46 A1(1 ,1:2) = [1 2];
47 A1(grids ,grids -1: grids) = [2 1];
48
49 b1 = zeros(grids ,1);
50 b1(1) = -5*f(x(1))/2 + 2*f(x(2)) + f(x(3))/2;
51 b1(2:end -1) = 3*(f(x(3: end))-f(x(1:end -2)));
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52 b1(end) = 5*f(x(grids))/2 - 2*f(x(grids -1)) - f(x(grids -2))/2;
53 b1 = b1/h;
54
55 % Compute approximate derivative
56 df_pade1 = A1\b1;
57
58 %Pade2
59 A2 = diag(4 * ones(grids , 1)) + diag(ones(grids -1, 1), 1) + diag(ones(grids

↪→ -1, 1), -1);
60 A2(1,end -1) = 1;
61 A2(grids ,2) = 1;
62
63 b2 = zeros(grids ,1);
64 b2(1) = f(x(2)) - f(x(grids -1));
65 b2(2:end -1) = (f(x(3: end))-f(x(1:end -2)));
66 b2(end) = f(x(2)) - f(x(end -1));
67 b2 = 3*b2/h;
68
69 % Compute approximate derivative
70 df_pade2 = A2\b2;
71
72 % Compute errors
73 error_forward(ii) = norm(df_exact(x) - df_forward , Inf);
74 error_central_second(ii) = norm(df_exact(x) - df_central_second , Inf);
75 error_central_fourth(ii) = norm(df_exact(x) - df_central_fourth , Inf);
76 error_pade1(ii) = norm(df_exact(x) - df_pade1 ', Inf);
77 error_pade2(ii) = norm(df_exact(x) - df_pade2 ', Inf);
78 end
79
80 % Plot the results
81 loglog(H, error_forward , 'bo -','LineWidth ',2, 'DisplayName ', 'FD');
82 hold on;
83 loglog(H, error_central_second , 'rx -','LineWidth ',2, 'DisplayName ', 'CD2');
84 loglog(H, error_central_fourth , 'gs -','LineWidth ',2, 'DisplayName ', 'CD4');
85 loglog(H, error_pade1 , 'md -','LineWidth ',2, 'DisplayName ', 'Pade4 -1');
86 loglog(H, error_pade2 , 'c*-','LineWidth ',2, 'DisplayName ', 'Pade4 -2');
87 % Plot asymptotes for 1st, 2nd, 3rd , and 4th order lines
88 order1 = (H/H(1)).^1;
89 order2 = (H/H(1)).^2;
90 order3 = (H/H(1)).^3;
91 order4 = (H/H(1)).^4;
92
93 loglog(H, order1 , 'k+--', 'LineWidth ', 0.5, 'DisplayName ', '1st order');
94 loglog(H, order2 , 'kp --', 'LineWidth ', 0.5, 'DisplayName ', '2nd order');
95 loglog(H, order3 , 'kh --', 'LineWidth ', 0.5, 'DisplayName ', '3rd order');
96 loglog(H, order4 , 'k|--', 'LineWidth ', 0.5, 'DisplayName ', '4th order');
97 xlabel('\Delta');
98 ylabel('L_{\infty} Error');
99 title('Comparison of Finite Difference Schemes ');

100 legend('location ', 'best');
101 grid on
102 axis tight
103 set(gcf ,'Color','w')
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15.2 Question 3 Problem 2.1

1 clear;clc
2 % Define the function
3 f = @(x) sin(5*x);
4
5 % Define the exact second derivative
6 exact_second_derivative = -25*sin (5*1.5);
7
8 % Define the range of h values
9 h_values = logspace(-4, 0, 100);

10
11 % Initialize arrays to store errors
12 error_fd2 = zeros(size(h_values));
13 error_popular = zeros(size(h_values));
14
15 % Calculate errors for different values of h
16 for i = 1: length(h_values)
17 h = h_values(i);
18
19 % Finite
20 % difference formula derived from two applications of the first -derivative

↪→ operator
21 second_derivative_fd2 = (f(1.5 + 2*h) - 2*f(1.5) + f(1.5 - 2*h))/(4*h^2) -

↪→ h^2/6 * (f(1.5 + h) - 2*f(1.5) + 2*f(1.5 - h));
22
23 % Popular second -derivative formula
24 second_derivative_popular = (f(1.5 + h) - 2*f(1.5) + f(1.5 - h))/(h^2);
25
26 % Calculate errors
27 error_fd2(i) = abs(second_derivative_fd2 - exact_second_derivative);
28 error_popular(i) = abs(second_derivative_popular - exact_second_derivative)

↪→ ;
29 end
30
31 % Plot errors on a log -log scale
32 loglog(h_values , error_fd2 , 'b-', 'DisplayName ', 'Finite Difference Formula ');
33 hold on
34 loglog(h_values , error_popular , 'r--', 'DisplayName ', 'Popular Formula ');
35 xlabel('Step Size (h)');
36 ylabel('Absolute Error ');
37 title('Comparison of Second Derivative Formulas ');
38 legend('location ', 'best');
39 grid on;
40 set(gcf ,'Color','w')

15.3 Question 4: Problem 2.2

1 clear;clc
2 syms a0 a1 a2 a3 h
3 eqn1 = a0 + a1 + a2 + a3 == 0;
4 eqn2 = -a0*h + 2*a3*h + a2*h == 1;
5 eqn3 = a0 + a2+4*a3 == 0;
6 eqn4 = -a0 +a2 + 8*a3 == 0;



Spring 2024 Page 24 of 32

7
8
9 % Solve te system of equations for a1 , a2, a3, a4 , and b2 in terms of

10 sol_ = solve([eqn1 , eqn2 , eqn3 , eqn4], [a0, a1 , a2, a3], 'ReturnConditions ',
↪→ true);

11
12 % Extracting solutions in terms of
13 a0_ = sol_.a0;
14 a1_ = sol_.a1;
15 a2_ = sol_.a2;
16 a3_ = sol_.a3;
17
18
19
20 % Display te solutions
21 disp(a0_)
22 disp(a1_)
23 disp(a2_)
24 disp(a3_)

15.4 Question 5 Problem 2.3

1 % Define the range of k*delta values
2 k_delta = linspace(0, pi, 100);
3
4 % Calculate modified wavenumber for second -order central difference scheme
5 k_prime_central = sin(k_delta);
6
7 % Calculate modified wavenumber for fourth -order P a d scheme
8 k_prime_pade = 3 * sin(k_delta) ./ (2 + cos(k_delta));
9

10 % Plot the results
11 plot(k_delta , k_prime_central , 'b-', 'LineWidth ', 2, 'DisplayName ', 'Second

↪→ Order Central Difference ');
12 hold on;
13 plot(k_delta , k_prime_pade , 'r--', 'LineWidth ', 2, 'DisplayName ', 'Fourth Order

↪→ P a d Scheme ');
14 plot(k_delta , k_delta , 'k-.', 'LineWidth ', 1, 'DisplayName ', 'Exact'); %

↪→ Straight line y=x
15 xlabel('$k\Delta$', 'Interpreter ', 'latex');
16 ylabel('$k^\ prime\Delta$', 'Interpreter ', 'latex');
17 title('Modified Wavenumber Comparison ');
18 legend('location ', 'best');
19 grid on;
20 axis tight
21 set(gcf ,'Color','w')

15.5 Question 7 Problem 2.8 a and b

1 clear;clc
2 syms a1 a2 a3 a4 b2 h
3 eqn1 = a1 + a2 + a3 == 0;
4 eqn2 = -a2*h - 2*a3*h + a4 == 0;
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5 eqn3 = a2*h^2 + 4*a3*h^2 + a4*h == 2*b2 + 2;
6 eqn4 = -(1/6)*a2*h^3 - (8/6)*a3*h^3 +(1/8)*a4*h^2 == -b2*h;
7 eqn5 = (1/24)*a2*h^4 +(16/24)*a3*h^4 + (1/48)*a4*h^3 == (1/2)*b2*h^2;
8
9 % Solve the system of equations for a1 , a2, a3, a4 , and b2 in terms of h

10 sol_h = solve ([eqn1 , eqn2 , eqn3 , eqn4 , eqn5], [a1, a2 , a3, a4, b2], '
↪→ ReturnConditions ', true);

11
12 % Extracting solutions in terms of h
13 a1_h = sol_h.a1;
14 a2_h = sol_h.a2;
15 a3_h = sol_h.a3;
16 a4_h = sol_h.a4;
17 b2_h = sol_h.b2;
18
19 % Display the solutions
20 disp(a1_h)
21 disp(a2_h)
22 disp(a3_h)
23 disp(a4_h)
24 disp(b2_h)

15.6 Question 7 Problem 2.8d

1 % This script solves the ode y''+y = x^2
2 clear;close all;clc
3
4 %Define the parameters
5 N = 24; % Number of grid points
6 h = 1 / N; % Step size
7 lb = 0.5*h; %lower bound
8 ub = 1 -0.5*h; %upper bound
9 x = linspace(lb, ub , N)'; % Grid points

10
11 % Define the tridiagonal matrices A and B for the finite difference

↪→ approximation of the second derivative
12 A = diag ((10/12) * ones(N, 1)) + diag ((1/12)*ones(N-1, 1), 1) + diag ((1/12)*

↪→ ones(N-1, 1), -1);
13 A(1,1) = 1;
14 A(1,2) = -11/23;
15 A(N,N) = 1;
16 A(N,N-1) = -11/23;
17
18 B = diag(-2 * ones(N, 1)) + diag(ones(N-1, 1), 1) + diag(ones(N-1, 1), -1);
19 B(1,1) = -36/23;
20 B(1,2) = 48/23;
21 B(1,3) = -12/23;
22 B(N,N) = -36/23;
23 B(N,N-1) = 48/23;
24 B(N,N-2) = -12/23;
25 B = B / (h^2);
26
27 % Define matrix C = A + B
28 C = A + B;



Spring 2024 Page 26 of 32

29
30 % Define the right -hand side function
31 b = A * (x.^3);
32
33 % Solve the linear system to find y
34 y = C \ b;
35
36 % Exact solution
37 exact_solution = x.^3 - 6*x + 6*sin(x) + 3*(2* cos (1) -1)*csc(1)*cos(x);
38
39 % Plot the exact and numerical solutions
40 plot(x, y, 'b-o', x, exact_solution , 'r--');
41 xlabel('x');
42 ylabel('y(x)');
43 title('Exact and Numerical Solutions ');
44 legend('Numerical Solution ', 'Exact Solution ');
45 set(gcf ,'Color','w')
46 axis tight

15.7 Question 8 Problem 2.10a

1 % Calculation of Derivatives on a Non -uniform Mesh
2 clear;close all;clc
3
4 % Given function
5 f = @(x) 1 - x.^8;
6 %Exact derivative
7 Df = @(x) -8 * x.^7;
8 Dg = @(x,a) a./((1 -(a*x).^2)*atanh(a));
9

10 % Setup
11 a = 0.9;
12 N = 32;
13 J = 0:N;
14 xi = -1 + 2*J./N;
15 x = 1/a * tanh(xi*atanh(a));
16
17 % Central difference formula
18 dx = x(3:end) - x(1:end -2);
19 df = f(x(3:end)) - f(x(1:end -2));
20 df_dx = df ./ dx;
21
22 % Plotting
23 figure;
24 plot(x(2:end -1), df_dx ,'LineWidth ', 2, 'Marker ', 'o', 'MarkerSize ', 6);
25 xlabel('$x$', 'Interpreter ', 'latex');
26 ylabel('$f''(x)$', 'Interpreter ', 'latex');
27 title('Derivative of $f(x)$ using Central Difference Formula ', 'Interpreter ', '

↪→ latex');
28
29 % Exact derivative computation
30 exact_derivative = Df(x);
31
32 % Plotting exact derivative
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33 hold on;
34 plot(x, exact_derivative ,'--', 'LineWidth ', 2);
35 legend('Central Difference ', 'Exact Derivative ');
36 set(gcf ,'Color','w')
37 hold off
38
39 % Calculate derivative
40 delta_xi = xi(6) - xi(5); % Any consecutive indices work
41 df_dxi = (f(x(3: end)) - f(x(1:end -2))) / (2 * delta_xi);
42 df_dx2 = df_dxi .* Dg(x(2:end -1), a);
43 error1 = max(abs(exact_derivative (2:end -1) - df_dx));
44 error2 = max(abs(exact_derivative (2:end -1) - df_dx2));
45
46 disp(error1)
47 disp(error2)
48
49 % Plotting
50 figure;
51 plot(x(2:end -1), df_dx2 , 'LineWidth ', 2, 'Marker ', 'o', 'MarkerSize ', 6);
52 xlabel('$x$', 'Interpreter ', 'latex');
53 ylabel('$f''(x)$', 'Interpreter ', 'latex');
54 title('Derivative of $f(x)$ using Coordinate Transformation Method ', '

↪→ Interpreter ', 'latex');
55 % Plotting exact derivative
56 hold on;
57 plot(x, exact_derivative ,'--', 'LineWidth ', 2);
58 legend('Central Difference ', 'Exact Derivative ');
59 set(gcf ,'Color','w')
60 hold off

15.8 Question 8 Problem 2.10b

1 % Calculation of Derivatives on a Non -uniform Mesh
2 clear;close all;clc
3
4 % Given function
5 f = @(x) 1 - x.^8;
6 %Exact derivative
7 Df = @(x) -8 * x.^7;
8 Dg = @(x) -1./sqrt(1-x.^2);
9

10 % Setup
11 N = 75;
12 J = 0:N;
13 xi = (pi*J)/N;
14 x = cos(xi);
15
16 % Central difference formula
17 dx = x(3:end) - x(1:end -2);
18 df = f(x(3:end)) - f(x(1:end -2));
19 df_dx = df ./ dx;
20
21 % Plotting
22 figure;
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23 plot(x(2:end -1), df_dx ,'LineWidth ', 2, 'Marker ', 'o', 'MarkerSize ', 6);
24 xlabel('$x$', 'Interpreter ', 'latex');
25 ylabel('$f''(x)$', 'Interpreter ', 'latex');
26 title('Derivative of $f(x)$ using Central Difference Formula ', 'Interpreter ', '

↪→ latex');
27
28 % Exact derivative computation
29 exact_derivative = Df(x);
30
31
32 % Plotting exact derivative
33 hold on;
34 plot(x, exact_derivative ,'--', 'LineWidth ', 2);
35 legend('Central Difference ', 'Exact Derivative ');
36 set(gcf ,'Color','w')
37 hold off
38 % Save image with specific name
39 saveas(gcf , 'q2_10bcentral_difference.jpg'); % Save the image as "

↪→ central_difference.png"
40
41 % Calculate derivative
42 delta_xi = xi(6) - xi(5); % Any consecutive indices work
43 df_dxi = (f(x(3: end)) - f(x(1:end -2))) / (2 * delta_xi);
44 df_dx2 = df_dxi .* Dg(x(2:end -1));
45
46 error1 = max(abs(exact_derivative (2:end -1) - df_dx));
47 error2 = max(abs(exact_derivative (2:end -1) - df_dx2));
48
49 disp(error1)
50 disp(error2)
51
52 % Plotting
53 figure;
54 plot(x(2:end -1), df_dx2 , 'LineWidth ', 2, 'Marker ', 'o', 'MarkerSize ', 6);
55 xlabel('$x$', 'Interpreter ', 'latex');
56 ylabel('$f''(x)$', 'Interpreter ', 'latex');
57 title('Derivative of $f(x)$ using Coordinate Transformation Method ', '

↪→ Interpreter ', 'latex');
58 % Plotting exact derivative
59 hold on;
60 plot(x, exact_derivative ,'--', 'LineWidth ', 2);
61 legend('Central Difference ', 'Exact Derivative ');
62 set(gcf ,'Color','w')
63 hold off
64 % Save image with specific name
65 saveas(gcf , 'q2_10bCoordinate Transformation.jpg');

15.9 Question 12 Problem 3.6

1 % This script solves for the Fredholm Equation
2 clear;close all;clc
3 N = 60;% Number of grid points
4 lb = 0; %lower bound
5 ub = pi; %upper bound
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6 h = (ub-lb) / (N-1); % Step size
7
8 x = linspace(lb,ub,N)';
9

10 %Create f column vector
11 f = -pi*x.^2;
12
13 %Preallocate A matrix
14 A = zeros(N,N);
15
16 for ii = 1: length(x) %fill the rows
17 A(ii ,1) = 0.5*h*3*(0.5* sin (3*x(ii)) - x(1)*x(ii)^2);
18 A(ii ,N) = 0.5*h*3*(0.5* sin (3*x(ii)) - x(N)*x(ii)^2);
19
20 for jj = 2: length(x)-1 %fill the columns
21 A(ii ,jj) = 3*h*(0.5* sin(3*x(ii)) - x(jj)*x(ii)^2);
22 end
23
24 A(ii ,ii) = -1+ A(ii ,ii);
25
26 end
27
28 %Solve for phi
29 phi = A\f;
30
31 % Exact solution
32 exact_solution =sin (3*x);
33
34 % Plot the exact and numerical solutions
35 plot(x, phi , 'b-o', x, exact_solution , 'r--');
36 xlabel('x');
37 ylabel('y(x)');
38 title('Exact and Numerical Solutions ');
39 legend('Numerical Solution ', 'Exact Solution ');
40 set(gcf ,'Color','w')
41 axis tight

Question 13 Problem 3.8

1 clear;close all;clc
2
3 % Given function
4 f = @(x) 100./ sqrt(x+ 0.01) + 1./((x - 0.3) .^2 + 0.001) - pi;
5 fdiff = @(x) -50./(x+ 0.01) ^1.5 - (2*(x -0.3))./((x - 0.3) .^2 + 0.001) ^2;
6
7 % Upper and lower limits of integration
8 a = 0;
9 b = 1;

10
11 % Exact value of the integral (if available)
12 exact_integral = integral(f, a, b);
13
14 % Values of n (number of panels)
15 n_values = 2.^(3:15);
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16
17 % Preallocate arrays to store errors and panel lengths
18 errors = zeros(size(n_values));
19 h_values = zeros(size(n_values));
20
21 % Calculate errors for different values of n
22 for i = 1: length(n_values)
23 n = n_values(i);
24 h = (b - a) / n; % Calculate step size
25 h_values(i) = h;
26
27 % Calculate the approximate integral using the trapezoidal rule
28 x = linspace(a, b, n + 1); % Generate x-values for the panels
29 y = f(x); % Evaluate the function at x-values
30
31 y_odd = y(2:2:end -1);
32 y_even = y(3:2:end -2);
33
34 approximate_integral_trapezoid = 0.5*h * ((y(1) + y(end)) + 2*sum(y(2:n)));

↪→ % Trapezoidal rule formula
35 approximate_integral_simpsons = (h/3) * (y(1) + 4*sum(y_odd) + 2*sum(y_even

↪→ ) + y(end)); % Simpson 's rule formula
36 approximate_integral_trapezoid_EC= approximate_integral_trapezoid -h^2/12

↪→ *(fdiff(x(end)) - fdiff(x(1)));
37
38 % Calculate the error percentage
39 errors(i,1) = abs(exact_integral - approximate_integral_trapezoid)/

↪→ exact_integral *100;
40 errors(i,2) = abs(exact_integral - approximate_integral_simpsons)/

↪→ exact_integral *100;
41 errors(i,3) = abs(exact_integral - approximate_integral_trapezoid_EC)/

↪→ exact_integral *100;
42 end
43
44 % Plot error percentage vs. number of panels on a log -log scale
45 loglog(n_values , errors (:,1), 'bo -','DisplayName ','Trapezoid Rule');
46 hold on
47 loglog(n_values , errors (:,2), 'ro -','DisplayName ','Simpson Rule');
48 loglog(n_values , errors (:,3), 'm*-','DisplayName ','Trapezoid Rule with EC');
49 xlabel('Number of panels ($n$)', 'Interpreter ', 'latex');
50 ylabel('Error (\%)', 'Interpreter ', 'latex');
51 title('Error vs. Number of Panels ', 'Interpreter ', 'latex');
52 axis tight
53 legend
54 grid on
55
56 Simp= errors (:,2);
57 TrapEC= errors (:,3);
58 % Find the slope and intercept of the line using linear regression
59 p2 = polyfit(log(n_values (2:end)), log(Simp (2:end)), 1);
60 slope2 = p2(1);
61 intercept2 = p2(2);
62
63 % Find the slope and intercept of the line using linear regression
64 p3 = polyfit(log(n_values (2:end)), log(TrapEC (2:end)), 1);
65 slope3 = p3(1);
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66 intercept3 = p3(2);
67
68 % Create the equation of the line
69 line_equation3 = sprintf('$n^{%.2f}$', slope3);
70 line_equation2 = sprintf(' $n^{%.2f}$', slope2);
71 % Add the equation of the line to the plot
72 text (1500 , 3.4e-6, line_equation2 , 'Interpreter ', 'latex', 'FontSize ', 12);
73 text(40, 0.00299 , line_equation3 , 'Interpreter ', 'latex', 'FontSize ', 12);
74
75 % Specify a range of error tolerances
76 tolerances = [1e-2, 1e -10];
77
78 % Evaluate the integral using adaptive quadrature with different tolerances
79 for i = 1: length(tolerances)
80 % Initialize a cell array to store x points for the current tolerance
81 x_points = [];
82
83 tolerance = tolerances(i);
84 fa = f(a); % Evaluate function at endpoints
85 fb = f(b);
86
87 % Evaluate the integral using adaptive quadrature
88 integral_value = adaptive_quadrature(f, a, b, fa , fb , tolerance);
89
90 % Store evaluation points (endpoints and midpoints)
91 x_points = unique ([x_points , a, b, (a+b)/2]);
92
93 % Plot the integrand and the positions of its evaluations for the current

↪→ tolerance
94 figure;
95 x_values = linspace(a, b, 1000); % Generate points for smooth plotting
96 plot(x_values , f(x_values), 'b-', 'LineWidth ', 1.5); % Plot the integrand
97 hold on;
98 scatter(x_points , f(x_points), 'r.'); % Scatter plot of evaluation points
99 xlabel('x');

100 ylabel('f(x)');
101 title(['Integrand and Positions of Evaluations (Tolerance = ', num2str(

↪→ tolerance), ')']);
102 legend('Integrand ', 'Evaluation Points ');
103 grid on;
104 end
105
106 % Define the recursive adaptive quadrature function
107 function integral_value = adaptive_quadrature(func , a, b, fa , fb ,tolerance)
108 c = (a + b) / 2; % Midpoint
109 h = b - a; % Width of the interval
110 fc = func(c); % Function evaluation at the midpoint
111 S = (h / 6) * (fa + 4*fc + fb); % Coarse Simpson 's rule approximation
112 d = (a + c) / 2;
113 e = (c + b) / 2;
114 fd = func(d);
115 fe = func(e);
116 S_left = (h / 12) * (fa + 4*fd + fc); % Left half interval approximation
117 S_right = (h / 12) * (fc + 4*fe + fb); % Right half interval approximation
118 S2 = S_left + S_right; % Fine Simpson 's rule approximation
119 if abs(S2 - S) <= 15 * tolerance



Spring 2024 Page 32 of 32

120 integral_value = S2 + (S2 - S) / 15; % Error corrected result
121 else
122 integral_value = adaptive_quadrature(func , a, c, fa , fc, tolerance) + ...
123 adaptive_quadrature(func , c, b, fc , fb ,tolerance); % Recursive call on

↪→ subintervals
124 end
125 end
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