
Spring 2023 Luyando Kwenda, Page 1 of 13

Name: Luyando Kwenda
Class: ENM 5020
Due Date: 11 April 2023
Assignment: 3

Implicit Euler Method Application to Lotka Volterra Equations

Spring 2023 Luyando Kwenda, Page 2 of 13

Contents

1 Introduction 3

2 Problem Setup and Formulation 3
2.1 Critical Points . 3
2.2 Implicit Euler and Newtons Method . 4

3 Results 4
3.1 Time Results . 4
3.2 Phase Space Trajectory . 6
3.3 Error . 6

4 Conclusion 7

5 Appendix 8
5.1 Main Code . 8
5.2 Newtons Methods . 9
5.3 Calculate Derivative . 10
5.4 Error Script . 10
5.5 Time Analysis . 11

Spring 2023 Luyando Kwenda, Page 3 of 13

1 Introduction

Lotka Volterra Equations are a set of nonlinear differential equations that model the predator-prey relationship in
an ecosystem. We assume no migration into and out of the system hence forming a closed loop. The terms a,b,c
and d are constant parameters whilst p and q are modifiers that represent competition.

dx

dt
= (a− by)x− px2 (1)

dy

dt
= (cx− d)y − qy2 (2)

Eq. (1) in this setup will represent the population of the prey species whilst Eq. (2) will represent the population
of the predator species. Our aim is to solve this system of equations using Implicit Euler Equations (Backward
Euler). Implicit Euler solves approximations using

yn+1 = yn + hf(tn+1, yn+1) (3)

However, the yn+1 appears on both sides of the equations so we need oat to use newtons method given an initial
guess until the result converges within a specific tolerance. We further analyse the trends in population of the the
two species over a given time and calculate the error that results in using Implicit Euler.

In our initial problem, we are give an equal value of constant parameters and no over (p and q are 0), but we
also want to see what happens if vary these variables and include competition.

2 Problem Setup and Formulation

2.1 Critical Points
In order to find the critical points, we set each differential equation to zero and solve any x and y solution as shown
below

(a− by)x− px2 = 0 (4)

(cx− d)y − qy2 = 0 (5)

After solving these equations algebraically, we are able to arrive at 4 possible critical points:

x = 0 x = a−by
p

y = 0 y = 0

y = −d
q y = ca−dp

bc+qp

In the description of the given problem, we are to set p and q equal to 0 hence we only consider 2 critical points.
These two points are derived by setting our new equation (p=q=0) and solving for each variable which gives (0, 0)
and (dc ,

a
b). We then are able to check what kind of critical point using a jacobian matrix i.e

J(0, 0) =

(
a− by −bx
cy cx− d

) ∣∣∣∣
(0,0)

=

(
a 0
0 −d

)
(6)

J(1, 1) =

(
a− by −bx
cy cx− d

) ∣∣∣∣
(1,1)

=

(
0 −b
c 0

)
(7)

From Eq. (6) we have two eigenvalues λ1 = a = 1 and λ2 = −d = −1 with each magnitude greater than zero
and having opposite signs shows that this is an unstable critical point (saddle point). As for Eq. (7) we get two
complex eigenvalues λ = ±i

√
bc = ±i which shows that this is a fixed point and in our case is a center of a spiral

(physically impossible).
Note, the above calculations are done with a=b=c=d=1 and p=q=0. Otherwise, we would have to find what

kind of critical points we listed in the table above for different constants.

Spring 2023 Luyando Kwenda, Page 4 of 13

2.2 Implicit Euler and Newtons Method
We will consider a first order ode, and the apply a backward difference approximation

dy

dt
= f(t, y) (8)

dy

dt
=

yn − yn−1

h
(9)

hence we get
yn − yn−1

h
= f(tn, yn) (10)

we can the rewrite the equation in the following form

yn = yn−1 + hf(tn, yn) (11)

Because we are looking for the next time step, n+1, we can replace n with n+1 and replace n-1 with n and this is
how Eq. (3) was derived.

yn+1 = yn + hf(tn+1, yn+1) (12)

This equation is similar to Explicit Euler except that the explicit case uses new guess approximations from the
previous and current result which is known unlike implicit euler where we need the next and current guess to form
the new approximation ie

yn+1 = yn + hf(tn, yn) (13)

The main difference between the two methods is that the Explicit Euler method is faster and easier to implement
but may be unstable for certain differential equations, while the Implicit Euler method is more stable but requires
more computational resources to solve. The choice of which method to use depends on the specific problem being
solved and the desired level of accuracy and stability. In the population we are trying to solve the Lotka-Volterra
equations can exhibit stability issues when using the Explicit Euler method, especially when the time step is large.
This can lead to unrealistic and physically impossible behavior in the solution, such as oscillations or divergence.

In contrast, the Implicit Euler method is unconditionally stable for the Lotka-Volterra equations, meaning that
it can handle any time step size without encountering stability issues. This method involves solving a nonlinear
equation at each time step, which can be computationally more expensive than the Explicit Euler method, but it
typically results in a more accurate and stable solution. Hence its use in this assignment.

To solve for the impicit method, we need to use Newtons method to solve for an initial guess. We also use the
jacobian and residual matrices to converge to a solution with R1 being the first row of the residual and R2 as the
second ie

R =

(
xn+1 − haxn+1 + bxn+1yn+1 + hpx2

n+1 − xn

yn+1 + hdyn+1 − hcxn+1yn+1 + hqy2n+1 − yn

)
(14)

J =

(
∂R1

∂xn+1

∂R1

∂yn+1
∂R2

∂xn+1

∂R2

∂yn+1

)
(15)

When choosing an initial guess, we choose a random set of numbers that do not include the critical points of
the initial equations. We then set xn+1 = xn and plug into the above equations and then solve the linear system
of equations Jδ = −R. The new delta values are then added to the previous n+1 to form the next next guess until
we converge to a solution. The code in the appendix provides full detail on the implementation. We also choose a
time step h (0.0001) which is kept constant.

3 Results

3.1 Time Results
Given a specific time step (h=0.0001), for a=b=c=d=1, we notice that in all the graphs, the peaks of the predators
and prey are equal. In the case where these constants are not equal, we get a difference in peak height. In the
figure 1b, we see that the predator population peaks higher than the prey because the c and d variables were larger.
We would be able to get a similar result in the case of the prey if a and b were larger.

Spring 2023 Luyando Kwenda, Page 5 of 13

(a) a=b=c=d=1 (b) a=3, b=2, c=3, d=5

Figure 1: Population Time Plots

(a) (b)

(c) (d)

Figure 2: Population Time Plots with Different Initial Values

Spring 2023 Luyando Kwenda, Page 6 of 13

3.2 Phase Space Trajectory
Another notable observation is the frequency of the waves produced. From figure 2a, we see that this option had
the highest occurrence of peaks and was closest to the critical point. As we move further away from the critical
point, the number of cycles reduces from 4 to 3. The initial condition determines how are away we are from the
critical point. We also not that if any of the calculations start with and initial condition of (1,1), we get a flat line
(y=1) because that is the steady solution and the derivative at that point if zero and no integration can occur.

Figure 3: Phase Plot

We can also look at the predator-prey relationship using Phase Plots as shown in figure 3. As the prey population
grows which is the lower part of the graph closer to the x axis, we see a lower population growth for the predators.
Because of an abundance in food, the predator population increases gradually while the prey population decreases.
The top of the phase is the peak of the predator population and we can assume that there is insufficient food so
we begin to see a sharp decrease in the predator population. This decrease allows for re-population of the the pray
and the cycle begins again. This process forms a closed loop and seen and the only difference is whether the initial
condition is closer to the stable point. The further we get away from this point, the larger the loop. At the stable
point, we do not for a loop but rather it would be represented by a dot.

3.3 Error

Theoretically, we know that the global error is in O(h2). In out case, we need to find the error by each time step
δt = h which means our error is h2. To prove this, we assume a time step, h, and calculate the x and y values. We
then break up that time step into 2 parts making the new time step h/2 and use this new value to evaluate the
result. This new result will the be the new initial condition and produces an output at the same location as our
initial time step. Because we do this twice, the error will be 2(h2)

2 = h2

2 . We then do this for multiple step sizes
to obtain multiple values. From figure 4 we are able to see plots of error vs step size. Figure 4a and 4b show trend
of a quadratic error which was our initial assumption. As the step size grows larger, the error grows quadratically.
We then further used the log scale to show the operation scaling which produced a value of approximately 2.

Spring 2023 Luyando Kwenda, Page 7 of 13

(a) x_0 = y_0 = 3 (b) x_0 = 10 and y_0 = 1

(c) x_0 = y_0 = 3 (d) x_0 = 10 and y_0 = 1

Figure 4: Error Plots

4 Conclusion

In summary, we had been tasked with solving the Lotka Volterra System of equations which in our case was
modified. We then determined the stability of the solution and found a general case in which we included and
overcrowding parameter. However, we only analyzed our solution in the case where the overcrowding term was
equal to zero. We came to a conclusion that we had two critical points, one a saddle point (0,0) and the other was
a stable fixed point (1,1). The kind of critical points was determined through the use of a eigenvalues derived from
a Jacobian matrix. We then used Implicit Euler Methods to obtain the population patterns over time and analyse
the predator-prey relationship and well. The implicit method was chosen over the explicit because of its numerical
stability which is a challenge of this system of equations. As we start of further form the critical point, we saw
higher periodicity ie fewer peaks. Based on the phase diagram, the relationship displayed a closed loop. Lastly, we
looked at the error generated from different time steps. As we increased the time step, we saw a quadratic increase
in the error generated. This kind of error growth makes the implicit method more ideal than the explicit method.
In all the calculations performed, the error scaled to the power 2.

Spring 2023 Luyando Kwenda, Page 8 of 13

5 Appendix

Below is the code used in the analysis of the problem

5.1 Main Code

1
2 % choose the number of steps we want
3 steps = 500000;
4
5 %select initial conditions
6 xi = [4 2 3 5 6 8 9 10];
7 yi = [4 2 3 5 6 8 9 10];
8
9 f1=[0 0 1];

10 %allocate constants
11 a = 1;
12 b = 1;
13 c = 1;
14 d = 1;
15 p = 0;
16 q = 0;
17
18 %chose a time step dt
19 h = 0.0001;
20
21 %tolerance for convergence
22 tol = 10^-6;
23
24 %Preallocate vectors that store output
25 xvec = zeros(1,steps +1);
26 yvec = zeros(1,steps +1);
27 time = zeros(1,steps +1);
28 figure
29 hold on
30 for jj = 1: length(xi)
31 x0 = xi(jj);
32 y0 = yi(jj);
33
34 xvec (1) = x0;
35 yvec (1) = y0;
36
37 for ii = 1: steps
38 [new_x , new_y] = NewtsMethod(a,b,c,d,p,q,x0 ,y0 ,tol ,h);
39
40 %store values
41 xvec(ii+1) = new_x;
42 yvec(ii+1) = new_y;
43
44 %assign new x0 and y0 values for next step
45 x0 = new_x;
46 y0 = new_y;
47
48 time(ii+1) = time(ii) + h;
49

Spring 2023 Luyando Kwenda, Page 9 of 13

50 end
51
52 plot(xvec ,yvec ,'DisplayName '," x_0 = "+ num2str(xi(jj))+ " y_0 = "+ num2str(

↪→ yi(jj)),LineWidth =2)
53
54
55
56 end
57
58
59 ylabel('Predator ','FontWeight ', 'bold')
60 xlabel('Prey','FontWeight ', 'bold')
61 title('Phase Space Trajectory ')
62 legend;
63
64 [dx , dy] = points(a,b,c,d,p,q,xi,yi);
65 quiver(xi,yi ,dx ,dy ,.3,'k','HandleVisibility ','off');

5.2 Newtons Methods

1 function [new_x , new_y] = NewtsMethod(a,b,c,d,p,q,x0,y0,tol ,h)
2
3 er = 1;
4
5 x = x0;
6 y = y0;
7
8 %initialize jacobian matrix
9 J = zeros (2,2);

10
11 %initialize residual vector
12 R = zeros (2,1);
13
14 while er >tol
15
16 %populate jacobian
17 J(1,1) = 1 - h*(a-b*y0) + 2*h*p*x0;
18 J(1,2) = h*b*x0;
19 J(2,1) = -h*y0*c;
20 J(2,2) = 1 - h*(c*x0 -d) + 2*h*q*y0;
21
22 %populate residual
23 R(1) = x0 - h*(a-b*y0)*x0 + h*p*x0^2 - x;
24 R(2) = y0 - h*(c*x0 -d)*y0 + h*q*y0^2 - y;
25
26 delta = J \ -R;
27 dx = delta (1);
28 dy = delta (2);
29
30 %calculate error
31 er = sqrt(dx^2 + dy^2);
32
33 %update n+1 values
34 new_x = x0+dx;

Spring 2023 Luyando Kwenda, Page 10 of 13

35 new_y = y0+dy;
36
37 %assign new initial values
38 x0 = new_x;
39 y0 = new_y;
40 end
41
42
43
44 end

5.3 Calculate Derivative

1 function [dx ,dy] = points(a,b,c,d,p,q,x,y)
2
3 dx = (a-b.*y).*x -p*x.^2;
4 dy = (c.*x -d).*y -q*y.^2;
5 dx = dx .*0.1;
6 dy = dy .*0.1;
7
8 mags = sqrt(dx.^2+dy.^2);
9 dx = dx./mags;

10 dy = dy./mags;
11
12 end

5.4 Error Script

1 % choose the number of steps we want
2 steps = 500000;
3
4 %select initial conditions
5 x0 = 3;
6 y0 = 3;
7
8 %allocate constants
9 a = 1;

10 b = 1;
11 c = 1;
12 d = 1;
13 p = 0;
14 q = 0;
15
16 %tolerance for convergence
17 tol = 10^-6;
18
19 h_vec = 0.0001:0.01:0.1;
20
21 error_vec = zeros(1,length(h_vec));
22
23 for ii = 1: length(h_vec)
24 h = h_vec(ii);
25 [x1 , y1] = NewtsMethod(a,b,c,d,p,q,x0,y0 ,tol ,h);

Spring 2023 Luyando Kwenda, Page 11 of 13

26
27 %divide the step size
28 h = h/2;
29 [x2 , y2] = NewtsMethod(a,b,c,d,p,q,x0,y0 ,tol ,h);
30
31 %plug in new values
32 [x3 , y3] = NewtsMethod(a,b,c,d,p,q,x2,y2 ,tol ,h);
33
34 xer = x1-x3;
35 yer = y1-y3;
36
37 err = xer^2 +yer ^2;
38 error_vec(ii) = sqrt(err);
39
40 end
41
42
43 figure
44 plot(h_vec ,error_vec ,'LineWidth ' ,2)
45 xlabel('\bf Step Size')
46 ylabel('\bf Error')
47 title('Error vs Timestep ')
48 exportgraphics(gcf ," Actual error" + "x_0 =" + num2str(x0)+ " y_0 = " + num2str(

↪→ y0) +".jpg")
49
50 p_p1 = polyfit(log10(h_vec),log10(error_vec), 1);
51 myfitp1 = (h_vec .^(p_p1 (1))) * 10^ p_p1 (2);
52 figure
53 loglog(h_vec ,error_vec ,'-.')
54 hold on
55 loglog(h_vec ,myfitp1 ,'r-.')
56 xlabel('\bf Step Size')
57 ylabel('\bf Error')
58 title('\bf Log Scale Error')
59 if sign(p_p1 (2)) == 1
60 a = annotation('textbox ' ,[.14 0.6 .5 .3],'String ' ,{['Linear Fit: y = ', num2str

↪→ (p_p1 (1)), 'x + ' num2str(p_p1 (2))],['Operation scaling: ~n^{' num2str(
↪→ p_p1 (1)) '}']},'EdgeColor ','none');

61 else
62 a = annotation('textbox ' ,[.14 0.6 .5 .3],'String ' ,{['Linear Fit: y = ' num2str(

↪→ p_p1 (1)) 'x - ' num2str(abs(p_p1 (2)))],['Operation scaling: ~n^{' num2str
↪→ (p_p1 (1)) '}']},'EdgeColor ','none');

63 end
64 l =legend('Calculated Error ','Linear Fit','Location ','Southeast ');
65 a.FontSize = 15;
66 l.FontSize = 15;
67 set(gca ,'fontsize ', 15);
68 exportgraphics(gcf ,"log error" + "x_0 =" + num2str(x0)+ " y_0 = " + num2str(y0)

↪→ +". jpg")

5.5 Time Analysis

1
2 % choose the number of steps we want

Spring 2023 Luyando Kwenda, Page 12 of 13

3 steps = 500000;
4
5 %select initial conditions
6 xi = [3 2 3 5 6 8 9 10];
7 yi = [4 2 5 4 9 2 1 3];
8
9 f1=[0 0 1];

10 %allocate constants
11 a = 1;
12 b = 1;
13 c = 1;
14 d = 1;
15 p = 0;
16 q = 0;
17
18 %chose a time step dt
19 h = 0.0001;
20
21 %tolerance for convergence
22 tol = 10^-6;
23
24 %Preallocate vectors that store output
25 xvec = zeros(1,steps +1);
26 yvec = zeros(1,steps +1);
27 time = zeros(1,steps +1);
28
29 for jj = 1: length(xi)
30 x0 = xi(jj);
31 y0 = yi(jj);
32
33 xvec (1) = x0;
34 yvec (1) = y0;
35
36 for ii = 1: steps
37 [new_x , new_y] = NewtsMethod(a,b,c,d,p,q,x0 ,y0 ,tol ,h);
38
39 %store values
40 xvec(ii+1) = new_x;
41 yvec(ii+1) = new_y;
42
43 %assign new x0 and y0 values for next step
44 x0 = new_x;
45 y0 = new_y;
46
47 time(ii+1) = time(ii) + h;
48
49 end
50
51 figure
52 plot(time ,xvec ,time ,yvec)
53 xlabel('Time (s)','FontWeight ', 'bold')
54 ylabel('Population ','FontWeight ', 'bold')
55 legend('Prey','Predator ')
56 title('Prey and Predator Dynamics over Time')
57 subtitle (" Initial Conditions: x_0 =" + num2str(xi(jj))+ " y_0 = " + num2str(yi(

↪→ jj)))

Spring 2023 Luyando Kwenda, Page 13 of 13

58 exportgraphics(gcf ,"x_0 =" + num2str(xi(jj))+ " y_0 = " + num2str(yi(jj)) +".
↪→ jpg")

59
60
61 end
62
63 close all

	Introduction
	Problem Setup and Formulation
	Critical Points
	Implicit Euler and Newtons Method

	Results
	Time Results
	Phase Space Trajectory
	Error

	Conclusion
	Appendix
	Main Code
	Newtons Methods
	Calculate Derivative
	Error Script
	Time Analysis

