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1 Introduction

Finite Element Methods (FEM) is numerical method used to solve Partial Differential Equations (PDEs). FEM
involves breaking down a problem into smaller parts (or shapes) called finite elements through discretization forming
a mesh and solved over their respective domains. The finite elements are connected at points called nodes and we a
can form a system of equations that’s can be solved mathematically. One variation of FEM is the Galerkin method
involves approximating the solution of a PDE or integral equation by a linear combination of basis functions. These
basis functions are chosen to satisfy certain properties such as being smooth, orthogonal, or piece-wise continuous.
The approximate solution is then obtained by minimizing the residual error, which is the difference between the
exact solution and the approximate solution.

We have been tasked to analyse a Boundary Value Problem (BVP) in one dimension in the domain D = (0 ≤
x ≤ 1). The particular BVP we are solving is a form of the Poisson Equation that is not equal to zero i.e α ̸= 0
with a Boundary Condition T = 0 on all boundaries.

d2T

dx2
+ α = 0 (1)

The generalized version of the Galerkin we are using in this assignment of the method of Mean Weighted
Residuals (MWR). A function is multiplied by by a set of weighted functions and integrated over a given domain.
In this case, the residuals are orthogonal to the weight functions. Given a PDE R(c) = 0, we can say that the
MWR is

Rk =

∫
D

wk(x)R(T (x))dx = 0 (2)

Our choice of the weighted function will determine the projection method.The weighting functions are chosen to
be the same as the approximate solution function used to approximate the solution of the PDE. In the Galerkin
MWM we have:

wk(x) = ϕk(x) (3)

Once all the equations are set up, we are to use 3 point gaussian quadrature to solve an integral

2 Methods

2.1 Finite Element Method
We first divide the given problem into a finite number of elements which we will label as Nel and try to obtain a
solution over each element. The number of unknown nodes will be denoted by N which are the temperature values
of the mesh. The differential equation in Eq. (1) with its boundary conditions is known as the strong form and
as we convert it into a weighted residual it will be in the weak form which is obtained from the method of MWR.
Combining Eq. (1) and Eq. (2) into Eq. (3), we obtain the residual function

R(x) =

∫ 1

0

ϕi(x)

(
d2T (x)

dx2
+ α

)
dx = 0 (4)

R(x) =

∫ 1

0

(
d2T (x)

dx2
ϕi(x) + αϕi(x)

)
dx = 0 (5)

The solution is an continuous function and this much more complicated to solve in this state, so we apply
integration by parts on the diffusion term.∫ 1

0

ϕi(x)
d2T (x)

dx2
dx = ϕi(x)

dT

dx

∣∣∣∣1
0

−
∫ 1

0

dT

dx

dϕi

dx
dx (6)

Because we know the that boundary conditions are zero at x=0 and x=1, the first term in the above equation goes
to zero leaving us with ∫ 1

0

ϕi(x)
d2T (x)

dx2
dx = −

∫ 1

0

dT

dx

dϕi

dx
dx (7)

Eq. (5) is the rewritten as Eq. (8) which is the weak form of the problem statement.
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R(x) =

∫ 1

0

(
αϕi(x)− dT

dx

dϕi

dx

)
dx = 0 (8)

We can also approximate the solution using

T (x) ≈
Nel+1∑
j=0

Tjϕ
j(x) (9)

This then further reduces the equation to

Nel+1∑
j=0

Tj

∫ 1

0

dϕi

dx

dϕj

dx
dx =

∫ 1

0

αϕidx (10)

This is a linear equation in the form Ax = b where x = T, which can be easily solved. The next step will be finding
a way of writing the A term into a matrix. A and b will be the global matrices but we can use smaller elements in
the local frame to simplify the method.

2.2 Gaussian Quadrature
Gaussian quadrature is a numerical integration method for approximating the definite integral of a function. It
involves using a weighted sum of function values at carefully chosen points within the interval of integration.
These points are known as quadrature points or nodes, and the weights are chosen to optimize the accuracy of the
approximation. Gaussian quadrature is very useful because of it high accuracy. Given an integral, I, we can rewrite
this in the form on weights

I =

∫ +1

−1

f(x)dx =

n∑
i=1

wif(xi) (11)

Using 3 point quadrature, we have the values of the weights and the Gauss points
wi = −

√
3
5 xi =

5
9

wi = 0 xi =
8
9

wi =
√

3
5 xi =

5
9

This method only works for the domain [-1 1] but we are able to map to the real domain. We evaluate each Nel

element in the local domain, then map to the real domain.

x =

3∑
i=1

xiϕ
i(ξ) (12)

The basis functions of this domain are
ϕ(1) =

1

2
(1− ξ) (13)

ϕ(2) =
1

2
(1 + ξ) (14)

With their derivatives given by
ϕ(1)

dξ
= −1

2
(15)

ϕ(2)

dξ
=

1

2
(16)

With the derived equations, we can now rewrite the weak form of the residual. For the matrix A, we have:∫
l

dϕi

dx

dϕj

dx
dx =

∫ +1

−1

f(ξ)dξ =

Nel∑
i=1

wif(ξ) (17)

Alocalij =

∫ +1

−1

dϕi

dξ

dϕj

dξ
(
dx

dξ
)−1 (18)
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Putting all these equations together we get

l+1∑
l=1

N∑
j=1

Tj

∫ +1

−1

dϕi

dξ

dϕj

dξ
(
dx

dξ
)−1dξ =

N∑
l=1

∫ +1

−1

ϕiα
dx

dξ
dξ (19)

3 Results

After keeping the value of alpha constant, we varied the number of elements in the fEM process and it is notably
different from the shape of the graph.

Figure 1: constant alpha

As we vary the number of elements, we can see that the curve becomes more smooth. This result is expected
as we observed in assignment 1. As we increased the number of grid points, we saw the curve of the line become
smooth, increasing its resolution. So we can conclude that having a greater number of elements produces smoother
results. As the number of elements increases, there is a point where there isn’t much of a difference like the case
when the number of elements is equal to 32 and 50.

As we increase the value of alpha, we see greater temperature peaks which makes sense when we compare it
to the case when alpha is equal to zero, This is just a regular second order differential equation that produces a
straight line.

The error in FEM generally decreases as the number of elements used in the mesh is increased. This is because
increasing the number of elements means that the approximation of the solution becomes more refined and accurate.
In this case, we expect the error to be really close to zero.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: 2D BVP Surface Plots
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4 Conclusion

In a broad overview, we have previously been able to solve a 1D heat equation using LU decomposition, Now
we have solved this using Finite Element Methods. This involved breaking the problem into smaller elements by
converting the problem from a string form to a weak form using the Galerkin Method of Weighted Residuals to
simplify the integration process. To solve the integrals, we use 3 point Gaussian Quadrature using Gauss-Legendre
Polynomial. The main advantage of Gaussian quadrature over other numerical integration methods is that it can
achieve high accuracy using relatively few function evaluations. This is because the method is designed to exactly
integrate polynomials of a certain degree, and since many functions can be approximated well by polynomials, the
method can provide accurate approximations for a wide range of functions.Once this occurs, we obtain a linear
equation in the form Ax=b which can be solved by the mldivide function in Matlab.

We observe that increasing the number of elements increases the resolution of the results but there is a limit
to the extent in which we increase the number of elements because at some Nel value the graphs start to look the
same.
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5 Appendix

Below is the code used in the analysis of the problem

5.1 Main Script

1 %this script changes the Nel at specific alpha values
2
3 %here we will choose a specific alpha value and vary the number of elements
4 alpha = 10;
5 Nel = linspace (5,50,6);
6 f1 = figure;
7 for ii = 1: length(Nel)
8 nElements = Nel(ii) ;
9 [T,x] = FEM1D(nElements ,alpha);

10
11 plot(x,T,'DisplayName ',"N = "+ num2str(nElements))
12 hold on
13 end
14 legend
15 title ("\ alpha = " + num2str(alpha))
16 xlabel('Position ')
17 ylabel('Temperature ')
18 exportgraphics (gcf ,'manyNel.jpg')
19 close(f1)
20
21 alphavec = linspace (1,100,6);
22
23 for ii = 1: length(Nel)
24 nElements = Nel(ii) ;
25
26 f = figure;
27 for jj = 1: length(Nel)
28 alpha = alphavec(jj);
29 [T,x] = FEM1D(nElements ,alpha);
30 plot(x,T,'DisplayName ',"alpha = "+ num2str(alpha))
31 hold on
32 end
33 legend
34 title(" Number of Elements = " + num2str(nElements))
35 xlabel('Position ')
36 ylabel('Temperature ')
37 exportgraphics (gcf ,"Nel ="+ num2str(nElements) +".jpg")
38 close(f)
39 end

5.2 FEM

1
2
3 function [T,x] = FEM1D(Nel ,alpha)
4
5 %Define the number of nodes
6 N = Nel +1;
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7
8 %create mesh
9 x = linspace (0,1,N);

10
11 %weights and xi for mapping
12 gx = [-sqrt (3/5) 0 sqrt (3/5)];
13 gw = [5/9 8/9 5/9];
14
15 %construct the Global and Local matrices
16 Aij_gobal = zeros(N,N);
17 b_global = zeros(N,1);
18
19 %create local to global mapping matrix
20 ltog = [(1:N-1) ', (2:N) '];
21
22 %calculate basis functions. Store the index 1 in row 1 and index 2 in row 2
23 phi = zeros(2,length(gx));
24 for ll = 1: length(phi)
25 phi(1,ll) = 0.5*(1 -gx(ll));
26 phi(2,ll) = 0.5*(1+ gx(ll));
27 end
28
29 %we also know the derivatives of each
30 dphi_xi =[ -0.5 0.5];
31
32 %loop through the elements Nel then stor in global matrix
33 for kk = 1:Nel
34 x1 = x(kk);
35 x2 = x(kk+1);
36 %find dx/dxi
37 dx_dxi = x1*dphi_xi (1) + x2*dphi_xi (2);
38 Alocal = zeros (2,2);
39 blocal = zeros (2,1);
40 for ii =1:2
41 blocal(ii) = sum(gw.*phi(1,:)*alpha*dx_dxi);
42 for jj =1:2
43 dphii_xi= basis_func(ii);
44 dphj_xi = basis_func(jj);
45 for pp =1:3
46 Alocal(ii,jj) = Alocal(ii,jj) + gw(pp)*dphii_xi*dphj_xi/dx_dxi;
47 end
48 end
49 end
50 %store values in global matrix
51 Aij_gobal(kk:kk+1,kk:kk+1) = Aij_gobal(kk:kk+1,kk:kk+1)+ Alocal;
52 b_global(kk:kk+1) = b_global(kk:kk+1) + blocal;
53
54 end
55
56 %impose boundary conditions
57 b_global (1) = 0;
58 b_global(end) = 0;
59
60 %make first and last row zero
61 Aij_gobal (1,:) = 0;
62 Aij_gobal(end ,:) = 0;
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63 Aij_gobal (1,1) = 1;
64 Aij_gobal(end ,end) = 1;
65
66 %solve for T
67 T= Aij_gobal\b_global;
68
69
70
71 end

5.3 Basis Functions Function

1 %This function determines the basis functions and its derivative
2 function phi_derivative = basis_func(ii)
3 %we only have two basis functions at ii=1 and ii=2
4 if ii == 1
5 phi_derivative = -0.5;
6
7 elseif ii==2
8
9 phi_derivative = 0.5;

10 end
11
12 end
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